Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
D A C B b c a b/2
Ta có: \(\widehat{CAB}=120^o\Rightarrow\widehat{CAD}=60^o\)
\(\Rightarrow\Delta DAC\) là nửa tam giác đều.
\(\Rightarrow AD=\frac{AC}{2}=\frac{b}{2}\)
Xét \(\Delta CDB\) vuông tại D có:
\(CB^2=CD^2+DB^2=\left(AC^2-AD^2\right)+\left(AD+AB\right)^2\)
\(\Leftrightarrow CB^2=AC^2-AD^2+AD^2+2AD.AB+AB^2=AC^2+2AB.\frac{AC}{2}+AB^2\)
\(\Leftrightarrow a^2=b^2+c^2+bc\)
Kẻ CE vuông góc với AB, ta có ngay tam giác ACE vuông có một góc nhọn 60. Suy ra \(AE=\frac{1}{2}AC=\frac{b}{2},CE=\frac{\sqrt{3}}{2}b\). Xét tam giác vuông EBC có '\(EB=c+\frac{b}{2},EC=\frac{\sqrt{3}}{2}b\to a^2=BC^2=BE^2+CE^2=\left(c+\frac{b}{2}\right)^2+\left(\frac{\sqrt{3}}{2}b\right)^2=c^2+bc+b^2\)
ABCHbc
Trong tam giác vuông ACH có AC2 = AH2 + CH2 = AH2 + (BC - BH)2 = AH2 + BC2 - 2.BC.BH + BH2
Trong tam giác vuông ABH có AH2 + BH2 = AB2 và BH = AB.cosB hay BH = c.cosB
Suy ra AC2 = BC2 + AB2 - 2BC.c.cosB hay b2 = a2 + c2 - 2ac.cosB
Câu hỏi của pham thi thu trang - Toán lớp 9 - Học toán với OnlineMath
cách 1
mình chỉ viết gợi ý thôi, ngại viết hết cẩ số má lắm. thông cảm nhé
bạn dùng công thức trong tam giác thường:
b2 = a2 + c2 - 2.ac.cosB (tức là AC2 = BC2 + AB2 - 2.AB,BC.cosB)
tính đc AC = x
trên tia BC, vẽ BE=BA sao cho E&C nằm khác phía so với B. dễ dang chứng minh dc tam giác ABE là tam giác đều. Hạ AH vuông góc với BE
=> AH=AB.sin60
tính dc AH=y
Trong tam giác AHC có AC=x, AH=y
=> sinC=AH/AC
=>trị số góc C
=>góc BDC = 180 - (gócC + 60) (trong tam giác BCD ý) =>sin(BDC)
dùng định lý hàm số sin
=> BD = BC*(sinC/sinBDC)
cách 2
Áp dụng định lý hàm số COS ta có:
AC^2 = AB^2+AC^2 - 2AB.AC.cosB
= 12^2 + 6^2 -2.12.6.(-1/2) = 252 ------> AC = CĂN 252
Vì BD là phân giác của góc B nên theo tính chất ta có:
AD/AC =AB/BC = 6/12 = 1/2
----> DC = 2 AD , mà AC = CĂN 252 ------> AD= 1/3 căn 252
Áp dụng định lý hàm số COS đồi với tam giác ABD có:
AD^2=AB^2+BD^2 - 2AB.BD.cosB
<=>(1/3 căn 252)^2= 6^2+ BD^2 - 2.6.BD.(1/2)
<=> BD^2 - 6BD + 8 =0
<=> BD = 4 hoặc BD =2
Vậy: BD = 4 (cm)
Trên đây là bài giải với ĐK: BD là phân giác trong.
còn nếu BD là phân giác ngoài thì tỉ lệ: AC/AD =AB/BC
DO VẬY BD = 8 cm
cách 3
Áp dụng định lý hàm số COS ta có:
AC^2 = AB^2+AC^2 - 2AB.AC.cosB
= 12^2 + 6^2 -2.12.6.(-1/2) = 252 ------> AC = CĂN 252
Vì BD là phân giác của góc B nên theo tính chất ta có:
AD/AC =AB/BC = 6/12 = 1/2
----> DC = 2 AD , mà AC = CĂN 252 ------> AD= 1/3 căn 252
Áp dụng định lý hàm số COS đồi với tam giác ABD có:
AD^2=AB^2+BD^2 - 2AB.BD.cosB
<=>(1/3 căn 252)^2= 6^2+ BD^2 - 2.6.BD.(1/2)
<=> BD^2 - 6BD + 8 =0
<=> BD = 4 hoặc BD =2
Vậy: BD = 4 (cm)
Trên đây là bài giải với ĐK: BD là phân giác trong.
còn nếu BD là phân giác ngoài thì tỉ lệ: AC/AD =AB/BC
DO VẬY BD = 8 cm
Cho tam giác ABC cân tại A, có ∠A = 20◦ , độ dài BC = a, AC = AB = b. Chứng minh rằng a3 + b3 = 3ab2
a}\(\frac{AC^2}{AB^2}=\frac{DC.BC}{BD.BC}=\frac{DC}{BD}\Rightarrow\frac{AC^4}{AB^4}=\frac{DC^2}{BD^2}=\frac{CF.AC}{BE.AB}\Rightarrow\frac{AC^3}{AB^3}=\frac{CF}{BE}\)
b}tứ giác AFDE là hình chữ nhật
=>AH=EF
=>AH2=EF2=ED2+FD2
3AH2+BE2+CF2=2AH2+BE2+CF2+ED2+FD2=2AH2+BD2+DC2=AH2+BD2+AH2+DC2=AB2+AC2=BC2
theo dinh ly pita go
Kẻ đường cao BD ứng với AC. Do góc A tù \(\Rightarrow\) D nằm ngoài đoạn thẳng AC hay \(CD=AD+AC\) và \(\widehat{DAB}=180^0-120^0=60^0\)
Áp dụng định lý Pitago:
\(AB^2=BD^2+AD^2\) \(\Rightarrow BD^2=AB^2-AD^2\)
Trong tam giác vuông ABD:
\(cos\widehat{BAD}=\dfrac{AD}{AB}\Rightarrow\dfrac{AD}{AB}=cos60^0=\dfrac{1}{2}\Rightarrow AD=\dfrac{1}{2}AB\)
\(\Rightarrow BD^2=AB^2-\left(\dfrac{1}{2}AB^2\right)=\dfrac{3}{4}AB^2\)
Pitago tam giác BCD:
\(BC^2=BD^2+CD^2=\dfrac{3}{4}AB^2+\left(AD+AC\right)^2\)
\(=\dfrac{3}{4}AB^2+\left(\dfrac{1}{2}AB+AC\right)^2\)
\(=\dfrac{3}{4}AB^2+\dfrac{1}{4}AB^2+AB.AC+AC^2\)
\(=AB^2+AB.AC+AC^2\)
Hay \(a^2=b^2+c^2+bc\)