Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có BH < HC ⇒ AB < AC (quan hệ giữa hình chiếu và đường xiên)
Chọn B
tự kẻ hình nha
a) xét tam giác BHD và tam giác BHC có
HD=HC(gt)
BHD=BHC(=90 độ)
BH chung
=> tam giác BHD= tam giác BHC(cgc)
=> BD=BC(hai cạnh tương ứng)
b) ta có HC^2=BC^2-BH^2( áp dụng định lý pytago)
AH^2=AB^2-BH^2( áp dụng định lý pytago)
vì AB<BC=> AB^2<BC^2=> AB^2-BH^2<BC^2-BH^2=> HC^2>AH^2=> HC>AH
tu ve hinh :
tamgiac ABC co :
AB = 7,2 => AB2 = 7,22 = 51,84
BC = 12 => BC2 = 122 = 144
AC = 9,6 => AC2 = 9,62 = 92,16
=> AB2 + AC2 = 51,84 + 92,16 = 144 = BC2
=> tamgiac ABC vuong tai A (dinh ly Py-ta-go dao)
a) xét tam giác ABC có góc C < góc B
=> AB < AC ( đ/lý 1)
vì góc đối diện vs cạnh lớn hơn thì lớn hơn và ngược lại
a)tam giác ABC có góc C< góc B =>AB<AC
b)Ta có:BH là hình chiếu của AB
HC là hình chiếu của AC
Mà:AB<AC(CMT)
Nên:BH<HC
c)Ta có:BH+HC=BC
Mà:BH<HC(CMT)
Nên:BH<BC:2
Mà:BM=BC:2(M là trung điểm BC)
=>BH<BM
=>H nằm giữa B và M
a: Xét ΔAHB vuông tại H và ΔAHD vuông tại H có
AH chung
HB=HD
=>ΔAHB=ΔAHD
=>AB=AD
mà góc B=60 độ
nên ΔABD đều
b: góc CAD=90-60=30 độ=góc HAD
=>AD là phân giác của góc HAC
=>DH/AH=DC/AC
mà AH<AC
nên DH<DC
Vì AB < AC ⇒ BH < HC (quan hệ giữa đường xiên và hình chiếu). Chọn A