K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 1 2021

Dễ thấy \(S_{ABC}=\dfrac{40.60}{2}=1200\left(cm^2\right)\)

Lại có \(S_{BEC}=\dfrac{S_{ABC}}{2}\)(do chung đường cao hạ từ B xuống AC và \(CE=\dfrac{AC}{2}\))

Tương tự ⇒\(S_{BDE}=\dfrac{S_{ABE}}{2}=\dfrac{S_{ABC}}{4}\)

\(S_{BDEC}=S_{BDE}+S_{BEC}=\dfrac{S_{ABC}}{4}+\dfrac{S_{ABC}}{2}=\dfrac{3S_{ABC}}{4}=\dfrac{3.1200}{4}=900\left(cm^2\right)\)

2 tháng 2 2021

a/ Xét t/g ABC có D,E lần lượt là trung điểm AB ; AC

=> DE là đường trung bình t/g ABC

=> DE // BC ; DE = BC/2

=> DE // BF ; DE = BF(do F là trung điểm BC)

=> Tứ giác BDEF là hình bình hành

b/ Có BDEF là hbh

=> EF = BD 

Xét t/g ABK vuông tại K có KD là đường trung tuyến

=> KD = 1/2 AB = BD=> EF = KD

Mà DE // BC

=> DE // KF

=> Tứ giác DEFK là htc

c/ Xét t/g AHC có ME là đường trung binh

=> ME = 1/2 HC ; ME // HC (1)

Xét t/g BHC có NF là đường trung bình

=> NF = 1/2 HC ; NF // HC (2)

(1) ; (2)

=> ME = NF ; ME // NF (3)

Xét t/g ABH có MN là đường trung bình

=> MN // AB ; MN = 1/2 ABMà

HC ⊥ AB

NF // HC=> MN ⊥ NF (4)(3) ; (4)

=> MNFE là hcn

=> NE = MF ; NE, MF cắt nhau tại trung điểm mỗi đoạn

CMTT ta có đpcm

8 tháng 1 2017

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

S D E C H = 22   c m 2 ;   S B D E F = 20   c m 2 ;   S D E F H = 12   c m 2

20 tháng 12 2023

a: Xét ΔABC có

D,E lần lượt là trung điểm của AB,AC

=>DE là đường trung bình của ΔABC

=>DE//BC và \(DE=\dfrac{1}{2}BC\)

Xét tứ giác BDEC có DE//BC

nên BDEC là hình thang

b: Xét ΔABC có

D,F lần lượt là trung điểm của BA,BC

=>DF là đường trung bình của ΔABC

=>DF//AC và \(DF=\dfrac{AC}{2}\)

DF//AC

E\(\in\)AC

Do đó: DF//AE

Ta có: \(DF=\dfrac{AC}{2}\)

\(AE=\dfrac{AC}{2}\)

Do đó: DF=AE

Xét tứ giác ADFE có

DF//AE

DF=AE

Do đó: ADFE là hình bình hành

Xét tứ giác AFBI có

D là trung điểm chung của AB và FI

=>AFBI là hình bình hành

AH
Akai Haruma
Giáo viên
20 tháng 12 2023

Hình vẽ:

19 tháng 12 2023

giúp mình với

 

20 tháng 12 2023

giúp mình câu này đi