K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 8 2016

Gọi G là giao điểm của BD và CE. Ta có G là trọng tâm của △ABC

Đặt GD=x,GE=y. Khi đó GB=2x,GC=2y.


Áp dụng định lý Pitago cho các tam giác vuông BGE, CGD, ta có:

GE2+GB2=BE2⇒y2+4x2=9 (1)

GD2+GC2=CD2⇒x2+4y2=16 (2)

Từ (1) và (2) ta có: 5(x2+y2)=25

⇒x2+y2=5

Áp dụng định lý Pitago cho tam giác vuông BGC, ta có: 

BC2=GB2+GC2=4x2+4y2=20

Vậy: BC = \(\sqrt[2]{5}\)

a) Xét ΔADB vuông tại D và ΔAEC vuông tại E có 

\(\widehat{EAC}\) chung

Do đó: ΔADB\(\sim\)ΔAEC(g-g)

Suy ra: \(\dfrac{AD}{AE}=\dfrac{AB}{AC}\)(Các cặp cạnh tương ứng tỉ lệ)

hay \(\dfrac{AD}{AB}=\dfrac{AE}{AC}\)

Xét ΔADE và ΔABC có 

\(\dfrac{AD}{AB}=\dfrac{AE}{AC}\)(cmt)

\(\widehat{A}\) chung

Do đó: ΔADE\(\sim\)ΔABC(c-g-c)

c: Xét tứ giác BHCK có

BH//CK

BK//CH

=>BHCK là hbh

=>M là trung điểm của HK

=>H,M,K thẳng hàng

d: BACK là hình thoi

=>M là trung điểm của AK và AK vuông góc BC 

=>A,H,M thẳng hàng

=>ΔABC cân tại A

=>AB=AC

 

3 tháng 6 2023

tham khảo
a.Ta có BK//CH(⊥AB),CK//BH(⊥AC)BK//CH(⊥AB),CK//BH(⊥AC)

→BHCK→BHCK là hình bình hành

b.Vì BHCKBHCK là hình bình hành

→HK∩BC→HK∩BC tại trung điểm mỗi đường

Do MM là trung điểm BCBC

→M→M là trung điểm HKHK

→H,M,K→H,M,K thẳng hàng

c.Ta có O,MO,M là trung điểm AK,HKAK,HK

→OM→OM là đường trung bình ΔAHKΔAHK

→OM//AH→OM//AH

Do BD∩CE=H→HBD∩CE=H→H là trực tâm ΔABC→AH⊥BCΔABC→AH⊥BC

→OM⊥BC