Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Theo BĐT tam giác thì:
$AC< AB+AC$ hay $AC< 9$
$BC< AB+AC$ hay $7< 2+AC$ hay $AC>5$ (cm)
Vậy $9> AC> 5$. Mà $AC$ là số nguyên tố nên $AC=7$
Giải thích các bước giải:
ABC là tam giác
<=> AB+BC>CA
AB+CA>BC
BC+CA>AB
Thay số=> 12<b<22
Xét ΔABC có
AC-AB<BC<AB+AC
\(\Leftrightarrow7-3< BC< 7+3\)
\(\Leftrightarrow4< BC< 10\)
\(\Leftrightarrow BC\in\left\{5;7\right\}\)
Ta có: AC + AB > BC > AC - AB(bất đẳng thức tam giác)
=>7 + 3 > BC > 7 - 3
10 > BC > 4
Mà độ dài BC là số nguyên tố nên BC\(\in\)(5,7)
Với BC =5 thì \(\Delta ABC\) là tam giác thường
Với BC =7 thì \(\Delta ABC\) là tam giác cân
Bài 2:
a: Đây là tam giác vuông
b: Đây ko là tam giác vuông
Gọi x là độ dài cạnh AC, Đk: \(x>0\)
Theo bất đẳng thức tam giác, ta có:
\(10-7< x< 10+7\)
\(\leftrightarrow3< x< 17\)
Vì x là một số nguyên tố lớn hơn 11
Nên x = 13
\(\rightarrow\) Chọn D
\(#Hân\)
Gọi độ dài của cạnh `AC` là `x (x \ne 0)`
`@` Theo bất đẳng thức trong tam giác, ta có:
`AB+BC > x > AB - BC`
`-> 10+7 > x > 10-7`
`-> 17 > x > 3`
`-> x={16 ; 15 ; 14 ; ... 4}`
Mà `x` là `1` số nguyên tố lớn hơn `11`
`-> x=13 (cm)`
Xét các đáp án trên
`-> D.`