Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đổi ẩn
\(\left(a;b;c\right)=\left(\frac{1}{x};\frac{1}{y};z\right)\)\(\Rightarrow\)\(x+y+z=3\)
\(P=\Sigma\frac{1}{\sqrt{xy+x+y}}\ge\Sigma\frac{2\sqrt{3}}{xy+x+y+3}\ge\frac{18\sqrt{3}}{\frac{\left(x+y+z\right)^2}{3}+2\left(x+y+z\right)+9}=\sqrt{3}\)
dấuu "=" xảy ra khi \(a=b=c=1\)
hình bạn tự vẽ nhé:(mình sẽ giải tiết kiệm chữ nhất có thể nên bạn phải CM thêm 1 vài cái mà nó dễ nhé)
\(\Delta ABC\) có \(\widehat{A}=60^0\Rightarrow\widehat{B}+\widehat{C}=120^0\)
BI LÀ TIA P/GIÁC GÓC B\(\Rightarrow\) \(\widehat{IBC}=\widehat{ABI}\)(1)
TƯƠNG TỰ THÌ \(\widehat{ICA}=\widehat{ICB}\)(2)
LẠI CÓ: \(\left(\widehat{IBC}+\widehat{IBA}\right)+\left(\widehat{ICB}+\widehat{ICA}\right)=\widehat{B}+\widehat{C}=120^0\)
\(\left(\widehat{IBC}+\widehat{ICB}\right)+\left(\widehat{IBA}+\widehat{ICA}\right)=\widehat{B}+\widehat{C}=120^0\)(3)
TỪ 1,2 VÀ 3\(\Rightarrow\) \(\left(\widehat{IBC}+\widehat{ICB}\right)=\left(\widehat{IBA}+\widehat{ICA}\right)=\frac{\widehat{B}+\widehat{C}}{2}=60^0\)
TAM GIÁC IBC CÓ \(\widehat{IBC}+\widehat{ICB}=60^0\) NÊN \(\widehat{BIC}=120^0\)
CÁCH TÍNH GÓC BKC THÌ CX TƯƠNG TỰ NHƯ TRÊN,BẠN CHỈ CẦN TÍNH CHÍNH XÁC TỔNG SỐ ĐO 2 GÓC NGOÀI LÀ ĐC.TA SẼ TÍNH ĐC \(\widehat{BKC}=60^0\)
B)TA SẼ ĐI TÍNH GÓC DBK
\(\widehat{DBK}=\widehat{IBC}+\widehat{CBK}\)
\(\widehat{IBC}+\widehat{ABI}+\widehat{CBK}+\widehat{KBx}=180^0\)(mk gọi là góc KBX NHÉ,GÓC NGÒAi ĐỈNH B SẼ CÓ 1 TIA LÀ TIA Bx)
mà \(\widehat{IBC}=\widehat{ABI}\);\(\widehat{CBK}=\widehat{KBx}\)(DO CÁC TAI PHÂN GIÁC GÓC NGOÀI VÀ GÓC TRONG ĐỈNH B)
\(\Rightarrow\)\(\widehat{IBC}+\widehat{CBK}=\widehat{KBx}+\widehat{ABI}=\frac{180^0}{2}=90^0\)
MÀ \(\widehat{DBK}=\widehat{IBC}+\widehat{CBK}\) NÊN \(\widehat{DBK}=90^0\)
BÂY H DỰA VÀO TAM GIÁC BDK CÓ GÓC DBK=90 ĐỘ,GÓC BKC HAY BKD =60 ĐỘ,TA SẼ TÍNH ĐC GÓC BDK HAY BDC=30 ĐỘ
Câu 9:
\(a,\left(a+1\right)^2\ge4a\\ \Leftrightarrow a^2+2a+1\ge4a\\ \Leftrightarrow a^2-2a+1\ge0\\ \Leftrightarrow\left(a-1\right)^2\ge0\left(luôn.đúng\right)\)
Dấu \("="\Leftrightarrow a=1\)
\(b,\) Áp dụng BĐT cosi: \(\left(a+1\right)\left(b+1\right)\left(c+1\right)\ge2\sqrt{a}\cdot2\sqrt{b}\cdot2\sqrt{c}=8\sqrt{abc}=8\)
Dấu \("="\Leftrightarrow a=b=c=1\)
Câu 10:
\(a,\left(a+b\right)^2\le2\left(a^2+b^2\right)\\ \Leftrightarrow a^2+2ab+b^2\le2a^2+2b^2\\ \Leftrightarrow a^2-2ab+b^2\ge0\\ \Leftrightarrow\left(a-b\right)^2\ge0\left(luôn.đúng\right)\)
Dấu \("="\Leftrightarrow a=b\)
\(b,\Leftrightarrow a^2+b^2+c^2+2ab+2bc+2ac\le3a^2+3b^2+3c^2\\ \Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\left(luôn.đúng\right)\)
Dấu \("="\Leftrightarrow a=b=c\)
Câu 13:
\(M=\left(a^2+ab+\dfrac{1}{4}b^2\right)-3\left(a+\dfrac{1}{2}b\right)+\dfrac{3}{4}b^2-\dfrac{3}{2}b+2021\\ M=\left[\left(a+\dfrac{1}{2}b\right)^2-2\cdot\dfrac{3}{2}\left(a+\dfrac{1}{2}b\right)+\dfrac{9}{4}\right]+\dfrac{3}{4}\left(b^2-2b+1\right)+2018\\ M=\left(a+\dfrac{1}{2}b-\dfrac{3}{2}\right)^2+\dfrac{3}{4}\left(b-1\right)^2+2018\ge2018\\ M_{min}=2018\Leftrightarrow\left\{{}\begin{matrix}a+\dfrac{1}{2}b=\dfrac{3}{2}\\b=1\end{matrix}\right.\Leftrightarrow a=b=1\)
Câu 6:
$2=(a+b)(a^2-ab+b^2)>0$
$\Rightarrow a+b>0$
$4(a^3+b^3)-N^3=4(a^3+b^3)-(a+b)^3$
$=3(a^3+b^3)-3ab(a+b)=(a+b)(a-b)^2\geq 0$
$\Rightarrow N^3\leq 4(a^3+b^3)=8$
$\Rightarrow N\leq 2$
Vậy $N_{\max}=2$
- đặt AB:AC=x=>AB=3x,AC=4x mà AB+AC+BC=24 và BC=10=>7x+10=24=>x=2 Vậy AB=6,AC=8. Suy ra Sabc=1/2*6*8=24
\(P=4a+3b+\frac{c^3}{\left(a-b\right)b}\)
\(=\left[\left(a-b\right)+b+\frac{c^3}{\left(a-b\right)b}\right]+3b+3a\)
\(\ge3c+3b+3a=3\left(a+b+c\right)=12\)
Dấu "=" xảy ra tại \(a=2;b=1;c=1\)
(a+b+c)(a+b-c)=3ab
<=>[(a+b)+c][(a+b)-c]=3ab
<=>(a+b)^2-c^2=3ab
<=>a^2+2ab+b^2-c^2=3ab
<=>a^2+b^2-c^2=ab..(cùng.bớt.2.vế.đi.2ab)
=>a^2+b^2-c^2/ab=1
=>a^2+b^2-c^2/2ab=1/2
=>cos.C=1/2
=>c=60