K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 2 2016

;ds y gvyt 

6 tháng 5 2018

a) Chú ý tam giác ABD cân tại B nên BM là đường phân giác cũng là đường cao, từ đó  B M ⊥ A D .

b) Chú ý AK, BM, DH là ba đường cao của tam giác AMD.

DD
11 tháng 5 2022

a) Xét tam giác \(AHD\) và tam giác \(AKD\):

\(\widehat{AHD}=\widehat{AKD}\left(=90^o\right)\)

\(AD\) cạnh chung

\(\widehat{HAD}=\widehat{KAD}\) (vì \(AD\) là tia phân giác góc \(A\) của tam giác \(ABC\)) 

Suy ra \(\Delta AHD=\Delta AKD\) (cạnh huyền - góc nhọn) 

\(\Rightarrow AH=AK\).

b) \(\Delta AHD=\Delta AKD\) suy ra \(DH=DK\) suy ra \(D\) thuộc đường trung trực của \(HK\).

\(AH=AK\) suy ra \(A\) thuộc đường trung trực của \(HK\)

suy ra \(AD\) là đường trung trực của \(HK\).

c) Xét tam giác \(AKE\) và tam giác \(AHF\): 

\(\widehat{A}\) chung

\(AH=AK\)

\(\widehat{AHF}=\widehat{AKE}\left(=90^o\right)\)

suy ra \(\Delta AKE=\Delta AHF\) (g.c.g) 

suy ra \(AE=AF\)

Xét tam giác \(AEF\) có: \(\dfrac{AH}{AE}=\dfrac{AK}{AF}\) suy ra \(HK//EF\).