Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Xét \(\Delta ABH\)và \(\Delta ACH\)ta có :
AB = AC ( gt )
\(H=90^o\)
AH cạnh chung
\(\Rightarrow\Delta ABH=\Delta ACH\left(c-g-c\right)\)
b, Vì \(\Delta ABH=\Delta ACH\left(cmt\right)\)
\(\Rightarrow BH=CH\)(2 cạnh t/ung)
\(\Rightarrow\)H là trung điểm BC
\(\Rightarrow AH\)là đường trung tuyến của \(\Delta ABC\)
Mà G là giao điểm của 2 đường trung tuyến AH và BM
Suy ra : G là trọng tâm của \(\Delta ABC\)
c, Áp dụng định lý Pytago cho \(\Delta ABH\)vuông tại H ta có :
\(AH^2+BH^2=AB^2\)
\(\Rightarrow AH^2+18^2=30^2\)
\(=AH^2=30^2-18^2\)
\(\Rightarrow AH^2=576\)
\(\Rightarrow AH=\sqrt{576}=24\)
Ta có : \(AG=\frac{2}{3}AH\)
\(\Rightarrow AG=\frac{2}{3}\cdot24\)
\(\Rightarrow AG=16\)
d, Xét \(\Delta ABC\)có H là trung điểm BC . Mà \(DH\perp AC\)( gt )
\(\Rightarrow\)D là trung điểm AB ( t/c đường trung bình của tam giác )
Xét \(\Delta ABC\)có CG là trung tuyến
Mà CD là trung truyến
=> CD và CG trùng nhau
=> C,G,D thẳng hàng ( đpcm )
bên toán ko có ai giải cả. H mik sắp lm xong câu d r, giúp vs câu d
ta có:
t1=\(\frac{S_1}{v_1}=\frac{S}{2v_1}\)
\(t_2=\frac{S_2}{v_2}=\frac{S}{2v_2}\)
vận tốc trung bình của nhười đó là:
\(v_{tb}=\frac{S}{t_1+t_2}=\frac{S}{\frac{S}{2v_1}+\frac{S}{2v_2}}=\frac{1}{\frac{1}{2v_1}+\frac{1}{2v_2}}=\frac{1}{\frac{v_2+v_1}{2v_1v_2}}=\frac{2v_1v_2}{v_2+v_1}\)
lấy vtb-trung bình cộng 2 v ta có:
\(\frac{2v_1v_2}{v_1+v_2}-\frac{v_1+v_2}{2}=\frac{4v_1v_2-v_1^2-2v_1v_2-v_2^2}{2\left(v_1+v_2\right)}=\frac{-\left(v_1^2-2v_1v_2+v_2^2\right)}{2\left(v_1+v_2\right)}\)
\(=\frac{-\left(v_1-v_2\right)^2}{2\left(v_1+v_2\right)}\)
mà (v1-v2)2>0 nên
-(v1-v2)2<0 và 2*(v2+v1)>0 nên ta suy ra
vận tốc trung bình này ko bao giờ lớn hơn trung bình cộng của hai vận tốc v1 và v2
Do G là trọng tâm tam giác nên ta có :
\(\hept{\begin{cases}CG=\frac{2}{3}CN\\BG=\frac{2}{3}BM\end{cases}}\Rightarrow CG>BG\Rightarrow\widehat{GBC}>\widehat{GCB}\)