K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 3 2017

Bài tập tổng hợp chương 3 Hình học 8 | Lý thuyết và Bài tập Toán 8 có đáp án

Áp dụng tính chất đường phân giác AD và BI và tam giác ABC và tam giác ABD.

Ta có: DI/IA = DB/AB = BD/c    ( 1 )

Bài tập tổng hợp chương 3 Hình học 8 | Lý thuyết và Bài tập Toán 8 có đáp án

Bài tập tổng hợp chương 3 Hình học 8 | Lý thuyết và Bài tập Toán 8 có đáp án

Bài tập tổng hợp chương 3 Hình học 8 | Lý thuyết và Bài tập Toán 8 có đáp án

Thay ( 2 ) vào ( 1 ) ta được:Bài tập tổng hợp chương 3 Hình học 8 | Lý thuyết và Bài tập Toán 8 có đáp án

Suy ra: Bài tập tổng hợp chương 3 Hình học 8 | Lý thuyết và Bài tập Toán 8 có đáp án

Bài tập tổng hợp chương 3 Hình học 8 | Lý thuyết và Bài tập Toán 8 có đáp án

1 tháng 12 2019

Bài tập tổng hợp chương 3 Hình học 8 | Lý thuyết và Bài tập Toán 8 có đáp án

Chứng minh tương tự như câu a, ta được:

Bài tập tổng hợp chương 3 Hình học 8 | Lý thuyết và Bài tập Toán 8 có đáp án

Công theo vế các đẳng thức ( 3 ),( 4 ),( 5 ) ta được:

Bài tập tổng hợp chương 3 Hình học 8 | Lý thuyết và Bài tập Toán 8 có đáp án

18 tháng 3 2020

a, Xét \(\Delta ACF\) và \(\Delta ABE\) có:

\(\widehat{AFC}=\widehat{AEB}=90^0\)

\(\widehat{BAC}\) là góc chung

\(\Rightarrow\Delta ACF~\Delta ABE\left(g.g\right)\)

\(\Rightarrow\frac{AC}{AB}=\frac{AF}{AE}\)

\(\Rightarrow AC.AE=AB.AF\)

Xét \(\Delta AEF\) và \(\Delta ABC\) có:

\(\widehat{CAB}\) là góc chung

\(\frac{AE}{AB}=\frac{AF}{AC}\)

\(\Rightarrow\Delta AEF~\Delta ABC\left(c.g.c\right)\)

b, Xét \(\Delta BDH\) và \(\Delta BEC\) có:

\(\widehat{EBC}\) là góc chung

\(\widehat{BEC}=\widehat{BDH}=90^0\)

\(\Rightarrow\Delta BDH~\Delta BEC\left(g.g\right)\)

\(\Rightarrow\frac{BH}{BC}=\frac{BD}{BE}\)

\(\Rightarrow BE.BH=BC.BD\left(1\right)\)

Tương tự như trên ta được: \(\Delta CDH~\Delta CFB\left(g.g\right)\)

\(\Rightarrow\frac{CH}{CB}=\frac{CD}{CF}\)

\(\Rightarrow CF.CH=CD.CB\left(2\right)\)

Từ (1) và (2) \(\Rightarrow BE.BH+CH.CF=BD.BC+BC.CD=BC\left(BD.CD\right)=BC^2\)

 \(\Rightarrow BH.BE+CH.CF=BC^2\)

19 tháng 3 2020

d,EI _|_ AB ; CE _|_ AB  => EI // CE => AI/IF = AE/EC (đl)

EK _|_ AD; CD _|_ AD => EK // CD => AK/KD = AE/EC (đl)

=> AI/IF = AK/KD; xét tam giac AFD

=> IK // FD (1)

ER _|_ BC; AD _|_ BC => ER // AD => CR/RD = CE/EA (đl)

EQ _|_ CF; AF _|_ CF => AH // AF => CH/FH =  CE/AE (đl)

=> CR/RD = CH/FH; xét tam giác CFD

=> HR // FD       (2)

EK _|_ AD; AD _|_ BD => EK // BD => KH/HD = EH/HB (đl)

EH _|_ CF; CF _|_ BF => EH // FB => EH/HB = QH/HF (đl)

=> KH/HD = QH/HF

=> KH // ED (3)

(1)(2)(3) => I;K;H;R thẳng hàng (tiên đề Ơclit)

Sửa đề: ΔABC cân tại A

a:ΔABC cân tại A

mà AD là đường phân giác

nên AD là đường cao

=>AD vuông góc BC

b: Xét ΔAFI và ΔAEI có

AF=AE
góc FAI=góc EAI

AI chung

=>ΔAFI=ΔAEI

=>góc AFI=góc AEI

=>FI vuông góc AB

c: Xét ΔABC có

BE,AD là đường cao

BE cắt AD tại I

=>I là trực tâm

=>CI vuông góc AB

=>C,I,F thẳng hàng

8 tháng 2 2020

Bạn vẽ hình đi mình giải cho 

Bài 10:

a) Xét ΔABE vuông tại E và ΔCBD vuông tại D có 

\(\widehat{DBC}\) chung

Do đó: ΔABE\(\sim\)ΔCBD(g-g)

b) Xét ΔHDA vuông tại D và ΔHEC vuông tại E có 

\(\widehat{AHD}=\widehat{CHE}\)(hai góc đối đỉnh)

Do đó: ΔHDA\(\sim\)ΔHEC(g-g)

Suy ra: \(\dfrac{HD}{HE}=\dfrac{HA}{HC}\)

hay \(HD\cdot HC=HE\cdot HA\)

Bài 11: 

a) Xét ΔABE vuông tại E và ΔACF vuông tại F có

\(\widehat{FAC}\) chung

Do đó: ΔABE\(\sim\)ΔACF(g-g)

b) Xét ΔFHB vuông tại F và ΔEHC vuông tại E có 

\(\widehat{FHB}=\widehat{EHC}\)(hai góc đối đỉnh)

Do đó: ΔFHB\(\sim\)ΔEHC(g-g)

Suy ra: \(\dfrac{HF}{HE}=\dfrac{HB}{HC}\)

hay \(HE\cdot HB=HF\cdot HC\)

c) Ta có: ΔAEB\(\sim\)ΔAFC(cmt)

nên \(\dfrac{AE}{AF}=\dfrac{AB}{AC}\)

hay \(\dfrac{AE}{AB}=\dfrac{AF}{AC}\)

Xét ΔAEF và ΔABC có

\(\dfrac{AE}{AB}=\dfrac{AF}{AC}\)(cmt)

\(\widehat{FAE}\) chung

Do đó: ΔAEF\(\sim\)ΔABC(c-g-c)

Suy ra: \(\widehat{AEF}=\widehat{ABC}\)