Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: góc BEC=1/2*180=90 độ
=>CE vuông góc AB
góc BFC=1/2*180=90 độ
=>BF vuông góc AC
góc BEC=góc BFC=90 độ
=>BEFC nội tiếp
góc AEH+góc AFH=180 độ
=>AEHF nội tiếp
b: Xét ΔAEC vuông tại E và ΔAFB vuông tại F có
góc A chung
=>ΔAEC đồng dạng với ΔAFB
=>AE/AF=AC/AB
=>AE*AB=AF*AC
c: góc BHC=góc BOC
góc BHC+góc BAC=180 độ
=>góc BOC+góc BAC=180 độ
=>góc BAC=60 độ
=>góc KOC=60 độ
=>OK/OC=1/2
a: Xét (O) có
ΔBEC nội tiếp
BC là đường kính
Do đó: ΔBEC vuông tại E
=>CE\(\perp\)AB
Xét (O) có
ΔBFC nội tiếp
BC là đường kính
Do đó: ΔBFC vuông tại F
=>BF\(\perp\)AC
XétΔABC có
CE,BF là đường cao
CE cắt BF tại H
Do đó: H là trực tâm của ΔABC
=>AH\(\perp\)BC
b: Xét ΔAEC vuông tại E và ΔAFB vuông tại F có
\(\widehat{A}\) chung
Do đó: ΔAEC ~ΔAFB
=>\(\dfrac{AE}{AF}=\dfrac{AC}{AB}\)
=>\(AE\cdot AB=AC\cdot AF;\dfrac{AE}{AC}=\dfrac{AF}{AB}\)
c: Xét ΔAEF và ΔACB có
\(\dfrac{AE}{AC}=\dfrac{AF}{AB}\)
\(\widehat{FAE}\) chung
Do đó: ΔAEF~ΔACB
=>\(\widehat{AEF}=\widehat{ACB}\)
d: Xét tứ giác AEHF có
\(\widehat{AEH}+\widehat{AFH}=180^0\)
=>AEHF là tứ giác nội tiếp
=>A,E,H,F cùng thuộc một đường tròn
a: Xét tứ giác AEHF có
\(\widehat{AEH}+\widehat{AFH}=180^0\)
Do đó: AEHF là tứ giác nội tiếp
Sửa đề: BF và CE cắt nhau tại H
a) Xét (O) có
ΔBEC nội tiếp đường tròn(B,E,C\(\in\)(O))
BC là đường kính(gt)
Do đó: ΔBEC vuông tại E(Định lí)
\(\Leftrightarrow CE\perp BE\)
\(\Leftrightarrow CE\perp AB\)
\(\Leftrightarrow\widehat{AEC}=90^0\)
hay \(\widehat{AEH}=90^0\)
Xét (O) có
ΔBFC nội tiếp đường tròn(B,F,C\(\in\)(O))
BC là đường kính(gt)
Do đó: ΔBFC vuông tại F(Định lí)
\(\Leftrightarrow BF\perp CF\)
\(\Leftrightarrow BF\perp AC\)
\(\Leftrightarrow\widehat{AFB}=90^0\)
hay \(\widehat{AFH}=90^0\)
Xét tứ giác AEHF có
\(\widehat{AEH}\) và \(\widehat{AFH}\) là hai góc đối
\(\widehat{AEH}+\widehat{AFH}=180^0\left(90^0+90^0=180^0\right)\)
Do đó: AEHF là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)
Xét ΔABC có
BF là đường cao ứng với cạnh AC(cmt)
CE là đường cao ứng với cạnh AB(cmt)
BF cắt CE tại H(gt)
Do đó: H là trực tâm của ΔABC(Định lí ba đường cao của tam giác)
\(\Leftrightarrow AH\perp BC\)
hay \(AD\perp BC\)(đpcm)
c: Theo câu b, ta được: H là tâm đường tròn ngoại tiếp ngũ giác DEKFO
OH vuông góc MN
=>MN là đường kính của (H)
=>HM=HN
rồi sao bạn câu hỏi là gì?:>