K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
7 tháng 2 2021

1.

Tọa độ A là nghiệm: \(\left\{{}\begin{matrix}x-y+2=0\\2x-3y+1=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=-5\\y=-3\end{matrix}\right.\)

\(\Rightarrow A\left(-5;-3\right)\)

Phương trình BC qua B và vuông góc đường cao kẻ từ A có dạng:

\(1\left(x-2\right)+1\left(y-1\right)=0\Leftrightarrow x+y-3=0\)

Gọi M là trung điểm BC thì tọa độ M thỏa mãn:

\(\left\{{}\begin{matrix}2x-3y+1=0\\x+y-3=0\end{matrix}\right.\) \(\Rightarrow M\left(\dfrac{8}{5};\dfrac{7}{5}\right)\)

M là trung điểm BC \(\Rightarrow C\left(\dfrac{6}{5};\dfrac{9}{5}\right)\)

2.

Do C thuộc AC nên tọa độ có dạng: \(C\left(c;2c+3\right)\)

Gọi M là trung điểm BC \(\Rightarrow M\left(\dfrac{c+4}{2};\dfrac{2c+5}{2}\right)\)

M thuộc trung tuyến kẻ từ A nên:

\(\dfrac{c+4}{2}+\dfrac{2c+5}{2}-1=0\Leftrightarrow c=-\dfrac{7}{3}\)

\(\Rightarrow C\left(-\dfrac{7}{3};-\dfrac{5}{3}\right)\)

27 tháng 4 2022

Gọi đường trung tuyến kẻ từ `A` cắt `BC` tại `M`

`=>M` là trung điểm của `BC`

`=>M(2 ; 0)`

Ta có: `\vec{AM} = ( 1 ; -1)` là vtcp của `AM`

`=>\vec{n_[AM]} = ( 1 ; 1 )`

    Mà `M(2 ; 0) in AM`

  `=>` Pt của đường trung tuyến kẻ từ `A` là:

      `1 ( x - 2) + 1 ( y - 0)=0`

`<=> x + y - 2 = 0`

Tọa độ A là:

\(\left\{{}\begin{matrix}2x+y=0\\x+y+1=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}2x+y=0\\x+y=-1\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}2x+y-x-y=0-\left(-1\right)\\x+y=-1\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=1\\y=-2\end{matrix}\right.\)

Đường cao AH: 2x+y=0

mà BC\(\perp\)AH

nên BC: -x+2y+c=0

Thay x=2 và y=3 vào -x+2y+c=0, ta được:

-2+2*3+c=0

=>c+4=0

=>c=-4

=>BC: -x+2y-4=0

=>x-2y+4=0

Tọa độ M là:

\(\left\{{}\begin{matrix}x-2y+4=0\\x+y+1=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=2y-4\\2y-4+y+1=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=1\\x=2-4=-2\end{matrix}\right.\)

M(-2;1); B(2;3); C(x;y)

M là trung điểm của BC

nên \(\left\{{}\begin{matrix}x_B+x_C=2\cdot x_M\\y_B+y_C=2\cdot y_M\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}2+x=2\cdot\left(-2\right)=-4\\3+y=2\cdot1=2\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=-6\\y=-1\end{matrix}\right.\)

Vậy: C(-6;-1)

1 tháng 5 2020

Cô xóa giúp em câu kia với ạ! Tọa độ đỉnh\(B\left(\frac{32}{17};\frac{49}{17}\right)\)và C\(\left(-\frac{8}{17};\frac{6}{17}\right)\)

Gọi đường phân giác AD: x+y-3=0, đường trung tuyến BM: x-y+1=0 và đường cao CH: 2x+y+1=0

Mà A \(\in\)AD => \(A\left(a;3-a\right);B\in BM\Rightarrow B\left(b;b+1\right);C\in CH\Rightarrow C\left(c;-2c-1\right)\)

Có M là trung điểm AC nên M\(\left(\frac{a+c}{2};\frac{2-a-2c}{2}\right)\)

Mà M\(\in\)BM nên thay vào phương trình BM ta có: \(\frac{a+c}{2}-\frac{2-a-2c}{2}+1=0\Leftrightarrow2a+3c=0\left(1\right)\)

Ta có: \(\overrightarrow{AB}=\left(b-a;a+b-2\right)\)do \(AB\perp\)CH => \(\overrightarrow{AB}\cdot\overrightarrow{u_{CH}}=0\Leftrightarrow3a+b=4\left(2\right)\)

Trong đó \(\overrightarrow{u_{CH}}\)=(1;-2) là một vecto chỉ phương của đường cao CH

Gọi I là giao của BM và AD. Nhận thấy AD _|_BM tại I nên I là trung điểm của BM

Do đó \(I\left(\frac{a+2b+c}{4};\frac{-a+2b-2c+4}{4}\right)\)mà I\(\in\)AD => 4b-c=8(3)

Từ (1)(2)(3) ta có \(a=\frac{12}{17};b=\frac{32}{17};c=\frac{-8}{17}\)

Kết luận \(A\left(\frac{12}{17};\frac{39}{17}\right),B\left(\frac{32}{17};\frac{49}{17}\right),C\left(\frac{-8}{17};\frac{6}{17}\right)\)

30 tháng 4 2020

Lần sau em đăng vào học 24 nhé!

Hướng dẫn: 

Gọi BM là đường trung tuyến kẻ từ B; AD là phân giác kẻ từ A; CH là đường cao kẻ từ C 

A ( a; 3 - a); C ( c: -2c -1 ) 

Có M là trung điểm AC => M ( a+c/2 ; 2-a-2c/2)

=> Gọi I là giao điểm của AD và BM => chứng minh I là trung điểm BM

=> tìm đc tọa độ B theo a và c

Mà B thuộc MB => thay vào có 1 phương trình theo ẩn a và c

Lại có: AB vuông CH => Thêm 1 phương trình theo a và c 

=> Tìm đc a, c => 3 đỉnh

AH
Akai Haruma
Giáo viên
3 tháng 2 2021

Lời giải:

Vì $BM: 2x+y-1=0$ nên đặt tọa độ điểm $M$ là $(a, 1-2a)$

Vì $CN: x-1=0$ nên đặt tọa độ điểm $C$ là $(1,b)$

Vì $M$ là trung điểm $AC$ nên:

\(\left\{\begin{matrix} x_M=\frac{x_A+x_C}{2}\\ y_M=\frac{y_A+y_C}{2}\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} a=\frac{2+1}{2}\\ 1-2a=\frac{1+b}{2}\end{matrix}\right.\Rightarrow b=-5\)

Vậy $C(1,-5)$

NV
4 tháng 2 2021

Tọa độ C là nghiệm của: \(\left\{{}\begin{matrix}2x-y+3=0\\6x-13y+29=0\end{matrix}\right.\) \(\Rightarrow C\left(-\dfrac{1}{2};2\right)\)

AB vuông góc đường cao kẻ từ C nên nhận \(\left(1;2\right)\) là 1 vtpt

Phương trình AB: \(1\left(x-4\right)+2\left(y-6\right)=0\Leftrightarrow x+2y-16=0\)

Gọi M là trung điểm AB, M là giao điểm AB và trung tuyến từ C:

\(\left\{{}\begin{matrix}x+2y-16=0\\6x-13y+29=0\end{matrix}\right.\) \(\Rightarrow M\left(6;5\right)\)

M là trung điểm AB nên tọa độ B: \(B\left(8;4\right)\)

26 tháng 4 2020

ai biêt

21 tháng 3 2021

undefined

13 tháng 3 2021

1.

Do A không thuộc hai đường trung tuyến đã cho nên giả sử đường trung tuyến xuất phát từ B, C lần lượt là \(2x-y+1=0;x+y-4=0\)

Trọng tâm G của tam giác có tọa độ là nghiệm của hệ \(\left\{{}\begin{matrix}2x-y+1=0\\x+y-4=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=3\end{matrix}\right.\Rightarrow G=\left(1;3\right)\)

Gọi M là trung điểm BC, ta có \(\overrightarrow{AG}=\dfrac{2}{3}\overrightarrow{AM}\)

\(\Rightarrow\left\{{}\begin{matrix}1+3=\dfrac{2}{3}\left(x_M+2\right)\\3-3=\dfrac{2}{3}\left(y_M-3\right)\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_M=4\\y_M=3\end{matrix}\right.\Rightarrow M=\left(4;3\right)\)

Gọi \(N=\left(m;2m+1\right)\) là trung điểm AC \(\Rightarrow C=\left(2m+2;4m-1\right)\)

Mà C lại thuộc CG nên \(2m+2+4m-1-4=0\Rightarrow m=\dfrac{1}{2}\)

\(\Rightarrow C=\left(3;1\right)\)

Phương trình đường thẳng BC:

\(\dfrac{x-4}{3-4}=\dfrac{y-3}{1-3}\Leftrightarrow2x-y-5=0\)

13 tháng 3 2021

2.

1.

Trọng tâm G của tam giác có tọa độ là nghiệm của hệ \(\left\{{}\begin{matrix}x-5y+1=0\\x+y-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{2}{3}\\y=\dfrac{2}{3}\end{matrix}\right.\Rightarrow G=\left(\dfrac{2}{3};\dfrac{1}{3}\right)\)

Gọi I là trung điểm BC, ta có \(\overrightarrow{AG}=\dfrac{2}{3}\overrightarrow{AI}\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{2}{3}-1=\dfrac{2}{3}\left(x_I-1\right)\\\dfrac{1}{3}-2=\dfrac{2}{3}\left(y_I-2\right)\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_I=\dfrac{1}{2}\\y_I=-\dfrac{1}{2}\end{matrix}\right.\Rightarrow I=\left(\dfrac{1}{2};-\dfrac{1}{2}\right)\)

Gọi \(M=\left(5m-1;m\right)\) \(\Rightarrow C=\left(10m-3;2m-2\right)\)

Mà C lại thuộc CN nên \(10m-3+2m-2-1=0\Rightarrow m=\dfrac{1}{2}\)

\(\Rightarrow C=\left(2;-1\right)\)

Phương trình đường thẳng BC:

\(\dfrac{x-2}{2-\dfrac{1}{2}}=\dfrac{y+1}{-1+\dfrac{1}{2}}\Leftrightarrow x+3y+1=0\)

AH
Akai Haruma
Giáo viên
11 tháng 3 2021

Lời giải:

Vì $A\not\in (d_1); (d_2)$ nên 2 đường trung tuyến này xuất phát từ đỉnh B và đỉnh C.

Gọi đây lần lượt là đường trung tuyến $BM,CN$

Gọi tọa độ $B(b, 2b-1), M(m, 2m-1), C(1,c), N(1,n)$

$M$ là trung điểm $AC$ nên: $m=\frac{3+1}{2}$ và $2m-1=\frac{1+c}{2}$

$\Rightarrow m=2; c=5$

Vậy tọa độ điểm C là $(1,5)$

$N$ là trung điểm $AB$ nên: $1=\frac{3+b}{2}$ 

$\Rightarrow b=-1$. Tọa độ $B(-1, -3)$