Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bạn ơi cho mình hỏi bài này ở đề năm bao nhiêu của thành phố nào vậy bạn?????
3. Xét tứ giác BFHD có:
HFB + HDB = 90º + 90º = 180º => BFHD là tứ giác nội tiếp. ⇒ FBH = FDH (1)
Tương tự có DHEC là tứ giác nội tiếp, ⇒HCE = HDE (2)
Mà BFEC là tứ giác nội tiếp nên FCE = FBE (3)
Từ (1) (2) (3)⇒ 2ABE = FDH + HDE = FDE
Vì BFEC là tứ giác nội tiếp đường tròn tâm I, đường kính BC nên theo quan hệ giữa góc ở tâm và góc nội tiếp cùng chắn cung EF, ta có: FIE = 2.FBE = 2.ABE
⇒FIE = FDE
4.Vì BFEC là tứ giác nội tiếp nên:
ABC = 180º – FEC = AEF => ΔAEF ~ ΔABC (g.g)
Suy ra độ dài EF không đổi khi A chạy trên cung lớn BC của đường tròn (O)
Gọi K là giao điểm thứ 2 của ED và đường tròn đường kính BC
Theo tính chất góc ngoài: FDE = DKE + DEK
Theo ý 3 và quan hệ giữa góc ở tâm và góc nội tiếp cùng chắn cung, có FDE = FIE = 2.DKE
⇒DKE = DEK => ΔDEK cân tại D => DE = DK
Chu vi ΔDEF là P = DE + EF + FD = EF + FD + DK = EF + FK
Có FK ≤ BC ( dây cung – đường kính) => P ≤ EF + BC không đổi
Dâu bằng xảy ra khi và chỉ khi FK đi qua I ⇔ D trùng I ⇔ ΔABC cân tại A.
Vậy A là điểm chính giữa của cung lớn BC
a) Do ΔABC đều => AB = BC = AC = a; \(\widehat{A}=\widehat{B}=\widehat{C}=60^o\)
Xét ΔBDM vuông tại D có: MD = MB.sin\(\widehat{B}\) = MB.sin60o = MB.\(\dfrac{\sqrt{3}}{2}\)
BD = MB.cos\(\widehat{B}\) = MB.cos60o = \(\dfrac{1}{2}\).MB
ΔCEM vuông tại E có: ME = MC.sin\(\widehat{C}\) = MC.sin60o = MC.\(\dfrac{\sqrt{3}}{2}\)
EC = MC.cos\(\widehat{C}\) = MC.cos60o = \(\dfrac{1}{2}\).MC
=> Chu vi tứ giác ADME là:
AD + AE + MD + ME = (AB - BD) + (AC - CE) + MB.\(\dfrac{\sqrt{3}}{2}\) + MC.\(\dfrac{\sqrt{3}}{2}\)
= AB + AC - (BD + CE) + \(\dfrac{\sqrt{3}}{2}\)(MB + MC)
= AB + AC - \(\dfrac{1}{2}\).(MB + MC) + \(\dfrac{\sqrt{3}}{2}\)(MB + MC)
= AB + AC + \(\dfrac{\left(\sqrt{3}-1\right)}{2}\).BC
= a + a + \(\dfrac{\left(\sqrt{3}-1\right)}{2}\).a = \(\dfrac{3+\sqrt{3}}{2}\).a
Do a không đổi => chu vi tứ giác ADME không đổi
b) Xét ΔBMD vuông tại D => \(\widehat{M_1}=90^o-\widehat{B}=90^o-60^o=30^o\)
ΔCME vuông tại E => \(\widehat{M_2}=90^o-\widehat{C}=90^o-60^o=30^o\) =>
Tứ giác BDEC nội tiếp đường tròn ⇔ \(\widehat{E_2}=\widehat{B}=60^o\)
Mà \(\widehat{B}=\widehat{C}=60^o\) (cmt) => \(\widehat{E_2}=\widehat{C}\). Mà 2 góc ở vị trí đồng vị => DE // BC
=> \(\left\{{}\begin{matrix}\widehat{D_1}=\widehat{M_1}=30^o\\\widehat{E_1}=\widehat{M_2}=30^o\end{matrix}\right.\)(hai góc so le trong)
=> \(\widehat{D_1}=\widehat{E_1}\left(=30^o\right)\)
=> ΔMDE cân tại M => MD = ME
=> \(\dfrac{\sqrt{3}}{2}\).MB = \(\dfrac{\sqrt{3}}{2}\).MC => MB = MC => M là trung điểm của BC
Vậy để tứ giác BDEC nội tiếp thì M là trung điểm của BC