K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 10 2015

Trong tam giác ABC có: AE = EC và AD = DB nên DE là đường trung bình của tam giác ABC. Do đó DE song song với BC hay DE song song với HF \(\Rightarrow\) EFHD là hình thang

 

a) Xét ΔAEB vuông tại E và ΔAFC vuông tại F có 

\(\widehat{BAE}\) chung

Do đó: ΔAEB∼ΔAFC(g-g)

b) Ta có: ΔAEB\(\sim\)ΔAFC(cmt)

nên \(\dfrac{AE}{AF}=\dfrac{AB}{AC}\)(Các cặp cạnh tương ứng tỉ lệ)

hay \(AF\cdot AB=AE\cdot AC\)(đpcm)

Ta có: \(AF\cdot AB=AE\cdot AC\)(cmt)

nên \(\dfrac{AF}{AC}=\dfrac{AE}{AB}\)

Xét ΔAEF và ΔABC có

\(\dfrac{AF}{AC}=\dfrac{AE}{AB}\)(cmt)

\(\widehat{FAE}\) chung

Do đó: ΔAEF\(\sim\)ΔABC(c-g-c)

22 tháng 4 2015

Tam giác vuông ADH và tam giác vuông AHB có góc A chung nên đồng dạng => AD/AH = AH/AB => AH2 = AD.AB

cmtt ta cũng có AH2 = AE.AB => AD.AB = AE. AC

Xét tam giác ABE và tam giác ACD có góc A chung và AB/AC = AE/AD (cmt)

=> tg ABE đồng dạng tg ACD (c-g-c) => góc ABE = góc ACD

đến đây bn tự cm tiếp nhé! 

23 tháng 4 2019

cmtt ở đâu ra z bạn

28 tháng 10 2016

Trả lời nhanh giùm mình nhé!!!:))

19 tháng 8 2016

Có ^ADE =^AHE ( ADHE là hcn)

Mà ^C=^AHE (phụ ^HAC)

=> ^ADE=^C

Lại có ^A chung

=> Tam giác ADE đồng dạng tam giác ACB (gg)

Phần b phải có số liệu j chứ ? =))

a: \(BC=\sqrt{9^2+6^2}=3\sqrt{13}\left(cm\right)\)

\(AH=\dfrac{AB\cdot AC}{BC}=\dfrac{6\cdot9}{3\sqrt{13}}=\dfrac{18\sqrt{13}}{13}\left(cm\right)\)

b: Xét ΔEBF vuông tạiE và ΔEDC vuông tại E có

\(\widehat{EBF}=\widehat{EDC}\)

Do đó: ΔEBF\(\sim\)ΔEDC

d: Xét ΔBAD vuông tại A và ΔBED vuông tại E có

BD chung

\(\widehat{ABD}=\widehat{EBD}\)

Do đó: ΔBAD=ΔBED

Suy ra: BA=BE và DA=DE

Xét ΔADF vuông tại A và ΔEDC vuông tại E có

DA=DE

\(\widehat{ADF}=\widehat{EDC}\)

DO đó: ΔADF=ΔEDC

Suy ra: AF=EC

=>BF=BC

=>ΔBFC cân tại B

mà BD là đường phân giác

nên BD la đường cao