K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 12 2015


c)Xét tam giác OED và ODC có:
góc OED=ODC(=90)(1)
góc EOB=DOC(đối đỉnh)(3). do đó góc EBO = DCO( theo định kí tổng 3 góc của tam giác)(2)
Từ 1,2,3 => tam giác OEB=ODC(định lí 2 tam giác bằng nhau)=> OB=OC(*)
Xét tam giác OAB và OAC có
AB=AC
OA chung
OB=OC(theo *)
Do đó tam giác OAB=OAC=> góc OAB = OAC=> OA là phân giác của góc BAC

24 tháng 3 2020

A) \(\Delta ABC\)CÂN TẠI A

\(\Rightarrow\hept{\begin{cases}AB=AC\\\widehat{B}=\widehat{C}\end{cases}}\)

XÉT \(\Delta BDA\)VUÔNG TẠI D VÀ\(\Delta CEA\)VUÔNG TẠI E CÓ

       \(BA=CA\left(GT\right)\)

  \(\widehat{A}\)LÀ GÓC CHUNG

=>\(\Delta BDA\)=\(\Delta CEA\)( CẠNH HUYỀN - GÓC VUÔNG )

=> BD = CE HAI CẠNH TƯƠNG ỨNG ( ĐPCM )

B)  VÌ \(\Delta BDA\)=\(\Delta CEA\)(CMT)

=> DA = EA ( HAI CẠNH TƯƠNG ỨNG ); \(\widehat{ABD}=\widehat{ACE}\)HAY \(\widehat{EBO}=\widehat{DCO}\)( HAI GÓC TƯƠNG ỨNG ) 

MÀ \(BE+EA=AB\)

    \(CD+DA=AC\)

MÀ AB = AC (CMT);  DA = EA (CMT)

=> BE = CD

XÉT \(\Delta OEB\)\(\Delta ODC\)

\(\widehat{BEO}=\widehat{CDO}=90^o\)

\(EB=DC\left(CMT\right)\)

 \(\widehat{EBO}=\widehat{DCO}\)

=>\(\Delta OEB\)=\(\Delta ODC\)(G-C-G)

24 tháng 3 2020

C) VÌ  \(\Delta OEB=\Delta ODC\left(CMT\right)\)

=> OE = OD

XÉT \(\Delta AEO\)\(\Delta ADO\)

\(AE=AD\left(CMT\right)\)

\(\widehat{AEO}=\widehat{ADO}=90^o\)

OE = OD (CMT)

=>\(\Delta AEO\)=\(\Delta ADO\)(C-G-C)

=> \(\widehat{EAO}=\widehat{DAO}\)HAI GÓC TƯƠNG ỨNG

MÀ AO ẰM GIỮA AE VÀ AD

=> AO LÀ PHÂN GIÁC CỦA \(\widehat{EAD}\)

HAY  AO LÀ PHÂN GIÁC CỦA \(\widehat{BAC}\)

17 tháng 2 2020

Hình minh họa:

Bài Làm:

a) Xét ΔBCE vuông tại E và ΔCBD vuông tại D có:

BC: chung

EBCˆ=DCBˆ(gt)EBC^=DCB^(gt)

=> ΔBCE=ΔCBD(ch−gn)ΔBCE=ΔCBD(ch−gn)

=> CE = BD (đpcm)

b) tg BCE = tg CBD

=> BE = CD (1)

và DBCˆ=ECBˆDBC^=ECB^

Ta có: DBCˆ+B1ˆ=EBCˆDBC^+B1^=EBC^ECBˆ+C1ˆ=DCBˆECB^+C1^=DCB^

mà {DBCˆ=ECBˆ(cmt)EBCˆ=DCBˆ(gt) => B1ˆ=C1ˆB1^=C1^ (2)

Từ (1), (2) => ΔOEB=ΔODC(cgv-gnk) (đpcm)

c) Xét ΔABOΔABO và ΔACOΔACO có:

AB = AC (gt)

AO: chung

BO = CO (tg OEB = tg ODC)

=> ΔABO=ΔACO(c−c−c)

=> BAOˆ=CAOˆ mà O nằm trong tam giác ABC

=> AO là tia p/g của góc BAC (đpcm)

17 tháng 2 2020

A B C D E

a )  Xét tam giác ABD và tam giác ACE có :

A là góc chung

AB = AC ( gt)

góc D = góc E = 90 độ ( gt )

Vậy tam giác ABD = tam giác ACE ( cạnh huyền góc nhọn )

=> BD = CE ( 2 cạnh tương ứng )

b )  Ta có : góc D = góc E = 90 độ ( gt ) (1)

Ta có : AB = AC ( gt )

AE = AD ( do tam giác ABD = tam giác ACE )

=> BE = CD (2)

Ta có : góc EBO = góc DCO ( do tam giác ABD = tam giác ACE ) (3)

Từ (1) , (2) , (3) => Tam giác OEB = Tam giác ODC

c )  Xét tam giác ABO và tam giác ACO có :

AB = AC ( gt )

AO chung

BO = CO ( Tam giác OEB = Tam giác ODC )

=> Tam giác ABO = tam giác ACO ( c.c.c )

=> Góc BAO = góc CAO ( 2 góc tương ứng )

=> AO là tia phân giác của góc BAC ( đpcm )

10 tháng 1 2019

A B C D E O 1 1 H

10 tháng 1 2019

a, Tam giác BDA và tam giác CEA có :

BA = CA (gt)

góc A : chung 

góc BDA = góc CEA (=90o)

=> Tam giác BDA = tam giác CEA 

=> BD = CE ( 2 cạnh tương ứng )

b,Tam giác BDA = tam giác CEA (cmt) => AD=AE ( 2 cạnh tương ứng)

Ta có AB = AC (gt) , AE=AD(cmt) => AB - AE = AC - AD hay EB= DC 

Tam giác BED và tam giác CDB có 

BD = CE (cmt)

BC : cạnh chung 

EB = DC (cmt)

=> tam giác BEC =tam giác CDB 

=> góc BCE = góc CBD

Vì AB = AC => tam giác ABC cân tại A => góc B = góc C

mà góc BCE = góc CBD => góc EBD = góc DCE hay góc EBO = góc DCO 

\(\Delta OEB\)và \(\Delta ODC\)có :

\(\widehat{OEB}=\widehat{ODC}\left(=90^o\right)\)

EB = DC (cmt)

\(\widehat{EBO}=\widehat{DCO}\left(cmt\right)\)

\(\Rightarrow\Delta OEB=\Delta ODC\left(g.c.g\right)\)

c,\(\Delta EBO=\Delta DCO\left(cmt\right)\Rightarrow BO=CO\)(2 cạnh tương ứng)

\(\Delta OAB\)và \(\Delta OAC\)

AB = AC (gt)

AO : cạnh chung 

OB = OC (gt)

\(\Rightarrow\Delta OAB=\Delta OAC\left(c.c.c\right)\Rightarrow\widehat{OAB}=\widehat{OAC}\)( 2 góc t.ứng)

AO là tia p/g của góc BAC

d,Đề sai nha 

17 tháng 12 2016

Ta có hình vẽ:

A B C E D O

a/ Xét tam giác ABD và tam giác ACE có:

A: góc chung

AB = AC (GT)

góc D = góc E = 900 (GT)

Vậy tam giác ABD = tam giác ACE ( cạnh huyền góc nhọn)

=> BD = CE (2 cạnh tương ứng)

b/ Ta có: góc D = góc E = 900 (GT) (1)

Ta có: AB = AC (GT)

AE = AD (do tam giác ABD = tam giác ACE)

=> BE = CD (2)

Ta có: góc EBO = góc DCO (do tam giác ABD = tam giác ACE) (3)

Từ (1), (2), (3) => tam giác OEB = tam giác ODC

c/ Xét tam giác ABO và tam giác ACO có:

AB = AC (GT)

AO: chung

BO = CO (tam giác OEB = tam giác ODC)

=> tam giác ABO = tam giác ACO (c.c.c)

=> góc BAO = góc CAO (2 góc tương ứng)

=> AO là tia phân giác của góc BAC (đpcm)

17 tháng 12 2016

A B C E D O

a) Xét 2Δ vuông AEC và ADB, ta có:

AB=AC (gt)

Chung \(\widehat{A}\)

Do đó: ΔAEC=ΔADB (ch-gn)

=> BD=CE

10 tháng 1 2021

(Bạn tự vẽ hình nha!)

a) Xét tam giác ABD vuông tại D và tam giác ACE vuông tại E có:

          AB=AC (gt)

          A là góc chung

Do đó, ............... (ch-gn)

=> BD=CE (2 cạnh tương ứng)

b) Vì AB=AC nên tam giác ABC là tam giác cân tại A => B=C => B1 + B2 = C1 + C2

Mà B1 = C1 (vì tam giác ABD= tam giác ACE) nên B2= C2

Xét tam giác BEC vuông tại E và tam giác CDB vuông tại D có:

          BD=CE (cmt)

          B2= C2 (cmt)

Do đó,.......... (ch-gn)

=> BE=DC (2 cạnh tương ứng)

Xét tam giác OBE vuông tại E và tam giác OCD vuông tại D có:

         BE= DC (cmt)

         B1 = C1 (cmt)

Do đó tam giác OBE= tam giác OCD (cgv-gnk)

c) Ta có: AB=AC (gt) => AE+EB= AD+DC

Mà BE=DC (cmt) nên AE=AD

Xét tam giác ADO và tam giác AEO có:

          EO=OD ( vì tam giác OBE= tam giác OCD)

          AE=AD (cmt)

          AO là cạnh chung

Do đó,.................(c.c.c)

=> A1= A2 ( 2 góc tương ứng)

=> AO là tia phân giác góc A

Vậy AO là tia phân giác góc BAC.

a: Xét ΔADB vuông tại D và ΔAEC vuông tại E có

AB=AC

\(\widehat{BAD}\) chung

Do đó: ΔADB=ΔAEC

=>BD=CE

b: ΔABD=ΔACE

=>\(\widehat{ABD}=\widehat{ACE}\)

=>\(\widehat{OBE}=\widehat{OCD}\)

ΔABD=ΔACE

=>AD=AE

AE+EB=AB

AD+DC=AC

mà AE=AD và AB=AC

nên EB=DC

Xét ΔOEB vuông tại E và ΔODC vuông tại D có

EB=DC

\(\widehat{OBE}=\widehat{OCD}\)

Do đó: ΔOEB=ΔODC

c: ΔOEB=ΔODC

=>OB=OC

Xét ΔABO và ΔACO có

AB=AC

BO=CO

AO chung

Do đó: ΔABO=ΔACO

=>\(\widehat{BAO}=\widehat{CAO}\)

=>AO là phân giác của góc BAC

d: Ta có: ΔABC cân tại A

mà AH làđường trung tuyến

nên AH là phân giác của góc BAC

mà AO là phân giác của góc BAC(cmt)

và AO,AH có điểm chung là A

nên A,O,H thẳng hàng