Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét \(\Delta ABM\)và \(\Delta ACM\)có :
AB = AC(gt)
AM chung
BM = CM(gt)
=> \(\Delta ABM=\Delta ACM\left(c.c.c\right)\)
b) Ta có \(\Delta ABM=\Delta ACM\)(theo câu a)
=> \(\widehat{BAM}=\widehat{CAM}\)(hai góc tương ứng)
=> AM là tia phân giác của \(\widehat{BAC}\)
c) Xét \(\Delta ABM\)và \(\Delta CDM\)có :
AM = CM(gt)
\(\widehat{M_1}=\widehat{M_2}\)(đối đỉnh)
BM = DM(gt)
=> \(\Delta ABM=\Delta CDM\left(c.g.c\right)\)
=> \(\widehat{ABM}=\widehat{CDM}\)(hai góc so le trong)
=> AB //CD
a) Xét tam giác AMB và tam giác AMC ta có:
AM chung
AB=AC (gt)
MB=MC (vì M là trung điểm của BC)
Suy ra tam giác AMB=tam giác AMC (c-c-c) (đpcm)
b) Vì tam giác AMB=tam giác AMC (cmt)
Suy ra góc BAM=góc CAM (2 góc tương ứng)
Suy ra AM là tia phân giác của góc BAC (đpcm)
c) Vì tam giác AMB=tam giác AMC (cmt)
Suy ra góc AMB=góc AMC(2 góc tương ứng)
Mà góc AMB+góc AMC=180 độ (2 góc kề bù)
Suy ra góc AMB=góc AMC=180 độ/2=90 độ
Suy ra AM vuông góc với BC tại M (đpcm)
Vì tam giác AMB=tam giác AMC (cmt)
Suy ra góc ACM=góc ABM (2 góc tương ứng) (đpcm)
a: Xét ΔABM và ΔACM có
AB=AC
AM chung
BM=CM
Do đó: ΔABM=ΔACM
b: Xét ΔMBA và ΔMCD có
MB=MC
\(\widehat{AMB}=\widehat{DMC}\)
MA=MD
Do đó: ΔMBA=ΔMCD
\(a,\left\{{}\begin{matrix}AB=AC\\BM=MC\\AM\text{ chung}\end{matrix}\right.\Rightarrow\Delta AMB=\Delta AMC\left(c.c.c\right)\\ b,\left\{{}\begin{matrix}BM=MC\\\widehat{AMB}=\widehat{CMD}\left(đđ\right)\\AM=MD\end{matrix}\right.\Rightarrow\Delta AMB=\Delta DMC\left(c.g.c\right)\\ \Rightarrow\widehat{ABC}=\widehat{BCD}\\ \text{Mà 2 góc này ở vị trí slt nên }AB\text{//}CD\\ c,\left\{{}\begin{matrix}BM=MC\\\widehat{AMC}=\widehat{BMD}\\AM=MD\end{matrix}\right.\Rightarrow\Delta AMC=\Delta DMB\left(c.g.c\right)\\ \Rightarrow\widehat{ACB}=\widehat{CBD}\\ \text{Mà 2 góc này ở vị trí slt nên }AC\text{//}BD\)
a) Sửa đề: ΔAMB=ΔDMC
Xét ΔAMB và ΔDMC có
MA=MD(gt)
\(\widehat{AMB}=\widehat{DMC}\)(hai góc đối đỉnh)
MB=MC(M là trung điểm của BC)
Do đó: ΔAMB=ΔDMC(c-g-c)
Ta có hình vẽ trên :
a) Xét 2 tam giác ABM và tam giác ACM có:
AB = AC (gt)
AM là cạnh chung
BM = MC (gt)
=>. tam giác ABM = tam giác ACM (c-c-c)
=> góc A1 = góc A2 (2 góc tương ứng)
=> AM là tia phân giác của góc BAC
b) Vì tam giác ABM = tam giác ACM
nên góc AMB = góc AMC (2 góc tương ứng)
mà góc AMB + góc AMC = 180 độ
=> góc AMB = góc AMC = 180/ 2 = 90 độ
=> AM vuông góc vói BC
c) Xét 2 tam giác vuông AMB và tam giác và tam giác DMC có:
MA =DM (gt)
BM = MC (gt)
=> tam giác AMB = tam giác DMC (2 cạnh góc vuông)
=> AB = DC (2 cạnh tương ứng)
a: Xét ΔAMB và ΔDMC có
MA=MD
\(\widehat{AMB}=\widehat{DMC}\)
MB=MC
Do đó: ΔAMB=ΔDMC
b: ΔAMB=ΔDMC
=>\(\widehat{MAB}=\widehat{MDC}\)
mà hai góc này là hai góc ở vị trí so le trong
nên AB//CD
c: Xét ΔAMB và ΔAMC có
AM chung
MB=MC
AB=AC
Do đó: ΔAMB=ΔAMC
=>\(\widehat{AMB}=\widehat{AMC}\)
mà \(\widehat{AMB}+\widehat{AMC}=180^0\)(hai góc kề bù)
nên \(\widehat{AMB}=\widehat{AMC}=\dfrac{180^0}{2}=90^0\)
=>AM\(\perp\)BC
XétΔCAD có
CM là đường cao
CM là đường trung tuyến
Do đó: ΔCAD cân tại C
Ta có: ΔCAD cân tại C
mà CM là đường cao
nên CM là phân giác của góc ACD
=>CB là phân giác của góc ACD
a) Xét hai tam giác $AMB$ và $AMC$ có:
$AM$ là cạnh chung;
$AB = AC$ (gt);
$BM = MC$ ($M$ là trung điểm $BC$);
Suy ra $\Delta AMB=\Delta AMC$ (c.c.c)
b) $\Delta AMB=\Delta AMC$ suy ra
$\widehat{BAM} = \widehat{CAM}$ (hai góc tương ứng)
Suy ra $AM$ là tia phân giác của góc $BAC$.
c) Xét hai tam giác $AMD$ và $DMC$ có:
$AM = AD$ (gt);
$\widehat{AMB} = \widehat{CMD}$ (hai góc đối đỉnh);
$BM = MC$.
Nên $\Delta AMD=\Delta DMC$ (c.g.c)
Suy ra $\widehat{BAM} = \widehat{CDM}$ (hai góc tương ứng)
Mà hai góc này ở vị trí so le trong nên $AB$ // $CD$.