Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(g là góc)
Xét tg ABC,có:
AB=AC
=>tg ABC cân tại A
=>gABC = gACB
a)Xét tg BEC và tg CDB ,có:
BC:chung
gBEC =gCDB =90*(vì EC vuông gAB,BD vuông gAC)
gEBC = gDCB(cmt)
=>tg BEC = tg CDB(ch-gn)
=>BD=EC
b)Theo phần a,ta có:tg BEC = tg CDB(ch-gn)
=>gDBC=gECB(2 góc tương ứng)
=>tg BIC cân tại I
=>BI=CI
mà EI+IC=EC và DI+BI=BD(vì I là gđ của BD và EC) và BD=EC(theo phần a)
=>EI = DI
c)Xét tg ABC ,có:
AB=AC(gt)
BI=CI(cmt)
BH=CH(vì H là trung điểm của BC)
=>Ba điểm A, I, H thẳng hàng
(g là góc)
Xét tg ABC,có:
AB=AC
=>tg ABC cân tại A
=>gABC = gACB
a)Xét tg BEC và tg CDB ,có:
BC:chung
gBEC =gCDB =90*(vì EC vuông gAB,BD vuông gAC)
gEBC = gDCB(cmt)
=>tg BEC = tg CDB(ch-gn)
=>BD=EC
b)Theo phần a,ta có:tg BEC = tg CDB(ch-gn)
=>gDBC=gECB(2 góc tương ứng)
=>tg BIC cân tại I
=>BI=CI
mà EI+IC=EC và DI+BI=BD(vì I là gđ của BD và EC) và BD=EC(theo phần a)
=>EI = DI
c)Xét tg ABC ,có:
AB=AC(gt)
BI=CI(cmt)
BH=CH(vì H là trung điểm của BC)
=>Ba điểm A, I, H thẳng hàng
cách giải đây
\(\Delta ABC\)có AB = AC suy ra tam giác ABC tà tam giác cân
xét \(\Delta EBC\)và\(\Delta DCB\)
góc B = góc C ( tam giác cân )
BC là cạnh huyền chung
do đó tam giác EBC = tam giác DCB ( cạnh huyền - góc nhọn )
suy ra BD = CE ( 2 cạnh tương ứng )
b)
xét \(\Delta AHB\)và \(\Delta AHC\)có \(\hept{\begin{cases}AB=AC\left(gt\right)\\\widehat{B}=\widehat{C}\left(gt\right)\\BH=HC\left(gt\right)\end{cases}}\)
do đó \(\Delta AHB=\Delta AHC\left(c.g.c\right)\\ \Rightarrow\widehat{BAH}=\widehat{CAH}\)( 2 góc tương ứng)
xét tam giác vuông AIE và tam giác vuông AID có
AI là cạnh huyền chung
góc BAH = góc CAH ( cmt)
do đó tam giác AIE = tam giác AID ( cạnh huyền - góc nhọn )
suy ra EI = ID ( 2 cạnh tương ứng )
c) góc BAH = góc CAH mà tia AH nằm giữa tia AB và AC nên AH là phân giác góc BAC (1)
tam giác AIE = tam giác AID suy ra góc EAI = góc DAI ( 2 góc tương ứng )
mà tia AI nằm giữa 2 tia AE và AD suy ra AI là phân giác góc EAD hay góc BAC (2)
từ (1) và (2) suy ra ba điểm A;I:H thẳng hàng
chị làm đây ko bt đúng hay sai đâu nha
xét tam giác ABC có BD vuông góc với AC
CE vuông góc với AB
hai đường thẳng này cát nhau tại I
suy ra I là trực tâm của tam giác ABC
suy ra AI vuông góc với BC(1)
Mặt khác, M là trung điểm của BC=> AM là đường trung tuyến của tam giác ABC
mà trong 1 tam giác cân đường trung tuyến đồng thời là đường cao
<=> AM cũng là đường cao của tam giác ABC
=> AM vuông góc với BC(2)
từ (1)(2) ta có A,I,M thẳng hàng
a: Xét ΔADB vuông tại D và ΔACE vuông tại E có
AB=AC
góc BAD chung
=>ΔADB=ΔACE
b: Xét ΔIBC có góc IBC=góc ICB
nên ΔIBC cân tại I
a) Xét 2 tg vuông AEC và ADB có: AB = AC (vì tam giác ABC cân tại A)
góc A chung
Do đó tg AEC = tg ADB (ch - gn)
=> BD = CE (đpcm)
b) xét 2 tg vuông CEB và BDC có: góc CBE = góc BCD (tam giác ABC cân tại A)
CE = BD (Cmt)
do đó tg CEB = tg BDC (cgv - gnk)
=> góc ECB = góc DBC
=> tam giác BIC cân tại I (đpcm)
c) xét 2 tg AIC và AIB có: AC = AB (tam giác ABC cân tại A)
AI chung
BI = IC (tam giác BIC cân (Cmt))
DO đó tg AIC = tg AIB (c.c.c)
=> góc IAC = góc IAB => AI là tia pg của góc BAC (Đpcm)
d) Ta có: tg CEB = tg BDC (cmt) => CD = BE mà AB = AC => AE = AD => AED cân tại A
Mà AI là tia pg của góc EAD nên AI vuông với DE(1)
Ta lại có: Tam giác ABC cân tại A mà AI là tia pg của góc BAC nên AI vuông BC (2)
Từ (1) và (2) suy ra DE // BC (cùng vuông vs BC) (đpcm)
e) ko bt
F) cm vuông như câu d nha
a)xét ΔEBC và ΔDBC có:
BC : cạnh chung
góc BEC = góc BDC ( góc vuông)
góc ABC = góc ACB ( vì AB = AC--> ΔABC cân tại A---> góc ABC = góc ACB)
---> ΔEBC = ΔDCB ( cạnh huyền- góc nhọn)
--->BD = CE ( hai cạnh tương ứng)
b)Xét ΔOEB và ΔODC có :
góc BEC = góc BDC ( góc vuông)
góc EOB = góc DOB ( đối đỉnh)
---> góc EBO = góc DCO
EB = DC (ΔEBC = ΔDCB )
---> ΔOEB = ΔODC ( g.c.g)
c) Xét ΔABO và ΔACO có :
AO : cạnh chung
AB = AC ( GT)
BO = CO ( ΔOEB = ΔODC)
--->ΔABO = ΔACO ( c.c.c)
---> góc BAO= góc CAO ( hai góc tương ứng)
---> AO là tia phân giác của góc BAC
a) Xét ΔABD vuông tại D và ΔACE vuông tại E có
AB=AC(ΔBAC cân tại A)
\(\widehat{BAD}\) chung
Do đó: ΔABD=ΔACE(cạnh huyền-góc nhọn)
Suy ra: AD=AE(Hai cạnh tương ứng)
Xét ΔAEI vuông tại E và ΔADI vuông tại D có
AI chung
AE=AD(cmt)
Do đó: ΔAEI=ΔADI(Cạnh huyền-cạnh góc vuông)