K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Xét ΔABD vuông tại D và ΔACE vuông tại E có

AB=AC(ΔBAC cân tại A)

\(\widehat{BAD}\) chung

Do đó: ΔABD=ΔACE(cạnh huyền-góc nhọn)

Suy ra: AD=AE(Hai cạnh tương ứng)

Xét ΔAEI vuông tại E và ΔADI vuông tại D có

AI chung

AE=AD(cmt)

Do đó: ΔAEI=ΔADI(Cạnh huyền-cạnh góc vuông)

  
18 tháng 12 2018

(g là góc)

Xét tg ABC,có:

AB=AC

=>tg ABC cân tại A

=>gABC = gACB

a)Xét tg BEC và tg CDB ,có:

BC:chung

gBEC =gCDB =90*(vì EC vuông gAB,BD vuông gAC)

gEBC = gDCB(cmt)

=>tg BEC = tg CDB(ch-gn)

=>BD=EC

b)Theo phần a,ta có:tg BEC = tg CDB(ch-gn)

=>gDBC=gECB(2 góc tương ứng)

=>tg BIC cân tại I

=>BI=CI

mà EI+IC=EC và DI+BI=BD(vì I là gđ của BD và EC) và BD=EC(theo phần a)

=>EI = DI

c)Xét tg ABC ,có:

AB=AC(gt)

BI=CI(cmt)

BH=CH(vì H là trung điểm của BC)

=>Ba điểm A, I, H thẳng hàng

(g là góc)

Xét tg ABC,có:

AB=AC

=>tg ABC cân tại A

=>gABC = gACB

a)Xét tg BEC và tg CDB ,có:

BC:chung

gBEC =gCDB =90*(vì EC vuông gAB,BD vuông gAC)

gEBC = gDCB(cmt)

=>tg BEC = tg CDB(ch-gn)

=>BD=EC

b)Theo phần a,ta có:tg BEC = tg CDB(ch-gn)

=>gDBC=gECB(2 góc tương ứng)

=>tg BIC cân tại I

=>BI=CI

mà EI+IC=EC và DI+BI=BD(vì I là gđ của BD và EC) và BD=EC(theo phần a)

=>EI = DI

c)Xét tg ABC ,có:

AB=AC(gt)

BI=CI(cmt)

BH=CH(vì H là trung điểm của BC)

=>Ba điểm A, I, H thẳng hàng

18 tháng 1 2017

A B C E D I

cách giải mk gửi bn sau nhé

18 tháng 1 2017

cách giải đây

\(\Delta ABC\)có AB = AC suy ra tam giác ABC tà tam giác cân

xét \(\Delta EBC\)\(\Delta DCB\)

góc B = góc C ( tam giác cân )

BC là cạnh huyền chung

do đó tam giác EBC = tam giác DCB ( cạnh huyền - góc nhọn )

suy ra BD = CE ( 2 cạnh tương ứng )

b)  A B C E D I H

xét \(\Delta AHB\)và \(\Delta AHC\)có \(\hept{\begin{cases}AB=AC\left(gt\right)\\\widehat{B}=\widehat{C}\left(gt\right)\\BH=HC\left(gt\right)\end{cases}}\)

do đó \(\Delta AHB=\Delta AHC\left(c.g.c\right)\\ \Rightarrow\widehat{BAH}=\widehat{CAH}\)( 2 góc tương ứng)

xét tam giác vuông AIE và tam giác vuông AID có

AI là cạnh huyền chung

góc BAH = góc CAH ( cmt)

do đó tam giác AIE = tam giác AID ( cạnh huyền - góc nhọn )

suy ra EI = ID ( 2 cạnh tương ứng )

c)   góc BAH = góc CAH mà tia AH nằm giữa tia AB và AC nên AH là phân giác góc BAC (1)

tam giác AIE = tam giác AID suy ra góc EAI = góc DAI ( 2 góc tương ứng )

mà tia AI nằm giữa 2 tia AE và AD suy ra AI là phân giác góc EAD hay góc BAC (2)

từ (1)  và (2) suy ra ba điểm A;I:H thẳng hàng 

13 tháng 1 2019

chị làm đây ko bt đúng hay sai đâu nha

xét tam giác ABC có BD vuông góc với AC

                               CE vuông góc với AB 

                               hai đường thẳng này cát nhau tại I 

suy ra I là trực tâm của tam giác ABC

suy ra AI vuông góc với BC(1)

Mặt khác, M là trung điểm của BC=> AM là đường trung tuyến của tam giác ABC

mà trong 1 tam giác cân đường trung tuyến đồng thời là đường cao

<=> AM cũng là đường cao của tam giác ABC

=> AM vuông góc với BC(2)

từ (1)(2) ta có A,I,M thẳng hàng

a: Xét ΔADB vuông tại D và ΔACE vuông tại E có

AB=AC

góc BAD chung

=>ΔADB=ΔACE

b: Xét ΔIBC có góc IBC=góc ICB

nên ΔIBC cân tại I

a) Xét 2 tg vuông AEC và ADB có: AB = AC (vì tam giác ABC cân tại A)

góc A chung

Do đó tg AEC = tg ADB (ch - gn)

=> BD = CE (đpcm)

b) xét 2 tg vuông CEB và BDC có: góc CBE = góc BCD (tam giác ABC cân tại A)

CE = BD (Cmt)

do đó tg CEB = tg BDC (cgv - gnk)

=> góc ECB = góc DBC

=> tam giác BIC cân tại I (đpcm)

c) xét 2 tg AIC và AIB có: AC = AB (tam giác ABC cân tại A)

AI chung

BI = IC (tam giác BIC cân (Cmt))

DO đó tg AIC = tg AIB (c.c.c)

=> góc IAC = góc IAB => AI là tia pg của góc BAC (Đpcm)

d) Ta có: tg CEB = tg BDC (cmt) => CD = BE mà AB = AC => AE = AD => AED cân tại A

Mà AI là tia pg của góc EAD nên AI vuông với DE(1)

Ta lại có: Tam giác ABC cân tại A mà AI là tia pg của góc BAC nên AI vuông BC (2)

Từ (1) và (2) suy ra DE // BC (cùng vuông vs BC) (đpcm)

e) ko bt

F) cm vuông như câu d nha

3 tháng 12 2016

a)xét ΔEBC và ΔDBC có:

BC : cạnh chung

góc BEC = góc BDC ( góc vuông)

góc ABC = góc ACB ( vì AB = AC--> ΔABC cân tại A---> góc ABC = góc ACB)

---> ΔEBC = ΔDCB ( cạnh huyền- góc nhọn)

--->BD = CE ( hai cạnh tương ứng)

b)Xét ΔOEB và ΔODC có :

góc BEC = góc BDC ( góc vuông)

góc EOB = góc DOB ( đối đỉnh)

---> góc EBO = góc DCO

EB = DC (ΔEBC = ΔDCB )

---> ΔOEB = ΔODC ( g.c.g)

c) Xét ΔABO và ΔACO có :

AO : cạnh chung

AB = AC ( GT)

BO = CO ( ΔOEB = ΔODC)

--->ΔABO = ΔACO ( c.c.c)

---> góc BAO= góc CAO ( hai góc tương ứng)

---> AO là tia phân giác của góc BAC

 

Hỏi đáp Toán

 

 

 

 

 

1. Cho tam giác ABC vuông tại A. tia phân giác góc B cắt AC tại D. từ A kẻ AE vuông góc BD tại E và cắt BC tại MA. chứng minh tam giác ABC bằng tam giác MBEB. chứng minh DM vuông góc với BCC .Kẻ AH vuông góc với BC tại I. Chứng minh AM là tia phân giác của góc IACcâu 2: Cho tam giác ABC cân tại A (góc A bé hơn 90 độ). vẽ tia phân giác AD của góc A (D thuộc BC)A. chứng minh tam giác ABD bằng tam giác ACDB. Vẽ...
Đọc tiếp

1. Cho tam giác ABC vuông tại A. tia phân giác góc B cắt AC tại D. từ A kẻ AE vuông góc BD tại E và cắt BC tại M

A. chứng minh tam giác ABC bằng tam giác MBE

B. chứng minh DM vuông góc với BC

C .Kẻ AH vuông góc với BC tại I. Chứng minh AM là tia phân giác của góc IAC

câu 2: Cho tam giác ABC cân tại A (góc A bé hơn 90 độ). vẽ tia phân giác AD của góc A (D thuộc BC)

A. chứng minh tam giác ABD bằng tam giác ACD

B. Vẽ đường trung tuyến của tam giác ABC cắt cạnh AC tại G. chứng minh G là trọng tâm của tam giác ABC

C. Gọi H là trung điểm của cạnh DC. qua h Vẽ đường thẳng vuông góc với cạnh DC cắt cạnh AC tại E. Chứng minh tam giác DEC cân

D. Chứng minh ba điểm B, G, E thẳng hàng

Câu 3 Cho tam giác ABC vuông tại A. Vẽ trung tuyến AM của tam giác ABC, Kẻ MH vuông góc với AC. Trên tia đối của tia MH đặt điểm  K sao cho MK bằng MH

a. chứng minh tam giác MHC bằng tam giác MKB và BK vuông góc với KH

B. Chứng minh AB song song với HK và BK = AH.

C. Vẽ BH cắt AB tại g. Gọi I là trung điểm của AB. Chứng minh ba điểm C, G, I thẳng hàng

câu4 Cho tam giác ABC vuông tại A. gọi M là trung điểm cạnh BC. trên tia đối của tia MA lấy điểm D sao cho MD = MA.

A . chứng minh tam giác MCD bằng tam giác MBD và AC song song với BD

B. Gọi I là trung điểm AM, J là trung điểm BM. AJ cắt BI tại G. Chứng minh tam giác GAB là tam giác cân

Câu 5 cho tam giác ABC vuông tại A (AB bé hơn AC). vẽ BD là tia phân giác của góc ABC (D thuộc AC). trên đoạn BC lấy điểm E sao cho BE bằng BA

a chứng minh tam giác ABD bằng tam giác EBD .Từ đó suy ra góc BED là góc vuông

b.  tia ED  cắt tia BA tại EF. Chứng minh tam giác BED cân

C. Chứng minh tam giác AFC bằng tam giác  ECF

D.Chứng minh: AB + AC >DE+BC

câu 6: Cho tam giác ABC vuông tại A. Vẽ đường phân phân giác BD của tam giác ABC và E là hình chiếu của D trên BC

a. chứng minh tam giác ABD bằng tam giác EBD và AE vuông góc với BD

B. Gọi giao điểm của hai đường thẳng ED và BA là F. Chứng minh tam giác ABC bằng tam giác AFC 

C. Qua A vẽ đường thẳng vuông góc với BC cắt CF tại G. Chứng minh ba điểm B, D, G thẳng hàng

câu 7: Cho tam giác ABC cân tại A (góc A bé hơn 90 độ). vẽ AD là phân giác của góc A (D thuộc BC)

A . Chứng minh tam giác ABD bằng tam giác ACD

B. lấy H là trung điểm của AB. Trên tia đối của tia HC lấy điểm K sao cho HK = HC. Chứng minh rằng AK = BC

c. CH cắt AD tại G. Chứng minh (BA+BC)÷6 >GH

4
28 tháng 4 2019

bài 1 đề bài có sai ko?

29 tháng 4 2019

Đề đúng nha bạn