K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 12 2023

a: Xét ΔABN và ΔACM có

AB=AC

\(\widehat{BAN}\) chung

AN=AM

Do đó: ΔABN=ΔACM

b: Ta có: AM+MB=AB

AN+NC=AC

mà AM=AN và AB=AC

nên MB=NC

Xét ΔMBC và ΔNCB có

MB=NC

\(\widehat{MBC}=\widehat{NCB}\)

BC chung

Do đó: ΔMBC=ΔNCB

=>\(\widehat{BMC}=\widehat{CNB}\) và \(\widehat{MCB}=\widehat{NBC}\)

Ta có: \(\widehat{MCB}=\widehat{NBC}\)

=>\(\widehat{OCB}=\widehat{OBC}\)

=>ΔOBC cân tại O

=>OB=OC

c: Ta có: AB=AC

=>A nằm trên đường trung trực của BC(1)

ta có: OB=OC

=>O nằm trên đường trung trực của BC(2)

Ta có: FB=FC
=>F nằm trên đường trung trực của BC(3)

Từ (1),(2),(3) suy ra A,O,F thẳng hàng

9 tháng 4 2015

\Delta CÓ NGHĨA LÀ TAM GIÁC NHÉ

A B C M N I E F

Bài làm

a) Xét tam giác AMN có:

AM = AN 

=> Tam giác AMN cân tại A.

b) Xét tam giác ABC cân tại A có:

\(\widehat{B}=\frac{180^0-\widehat{A}}{2}\)                                            (1) 

Xét tam giác AMN cân tại A có:

\(\widehat{M}=\frac{180^0-\widehat{A}}{2}\)                                         (2) 

Từ (1)(2) => \(\widehat{B}=\widehat{M}\)

Mà hai góc này ở vị trí đồng vị.

=> MN // BC

c) Xét tam giác ABN và tam giác ACM có:

AN = AM ( gt )

\(\widehat{A}\) chung

AB = AC ( Vì tam giác ABC cân )

=> Tam giác ABN = tam giác ACM ( c.g.c )

=> \(\widehat{ABN}=\widehat{ACM}\)( hai cạnh tương ứng )

Ta có: \(\widehat{ABN}+\widehat{MBC}=\widehat{ABC}\)

          \(\widehat{ACM}+\widehat{MCB}=\widehat{ACB}\)

Mà \(\widehat{ABN}=\widehat{ACM}\)( cmt )

      \(\widehat{ABC}=\widehat{ACB}\)( hai góc kề đáy của tam giác cân )

=> \(\widehat{IBC}=\widehat{ICB}\)

=> Tam giác BIC cân tại I

Vì MN // BC

=> \(\widehat{MNI}=\widehat{IBC}\)( so le trong )

     \(\widehat{NMI}=\widehat{ICB}\)( so le trong )

Và \(\widehat{IBC}=\widehat{ICB}\)( cmt )

=> \(\widehat{MNI}=\widehat{NMI}\)

=> Tam giác MIN cân tại I

d) Xét tam giác cân AMN có:

E là trung điểm của MN

=> AE là trung tuyến  

=> AE là đường trung trực.

=> \(\widehat{AEN}=90^0\)                    (1) 

Xét tam giác cân MNI có:

E là trung điểm MN

=> IE là đường trung tuyến

=> IE là trung trực.                            

=> \(\widehat{IEN}=90^0\)        (2) 

Cộng (1)(2) ta được:\(\widehat{IEN}+\widehat{AEN}=90^0+90^0=180^0\) => A,E,I thẳng hàng.                      (3) 

Xét tam giác cân BIC có:

F là trung điểm BC

=> IF là trung tuyến

=> IF là trung trực.

=> \(\widehat{IFC}=90^0\)                

Và MN // BC

Mà \(\widehat{IFC}=90^0\)

=> \(\widehat{IEN}=90^0\)

=> E,I,F thẳng hàng.             (4) 

Từ (3)(4) => A,E,I,F thẳng hàng. ( đpcm )

# Học tốt #

a: Xét ΔMBC và ΔNCB có

MB=NC

\(\widehat{MBC}=\widehat{NCB}\)(ΔABC cân tại A)

BC chung

Do đó: ΔMBC=ΔNCB

b: ΔMBC=ΔNCB

=>\(\widehat{MCB}=\widehat{NBC}\)

Ta có: \(\widehat{ABN}+\widehat{CBN}=\widehat{ABC}\)

\(\widehat{ACM}+\widehat{MCB}=\widehat{ACB}\)

mà \(\widehat{ABC}=\widehat{ACB};\widehat{CBN}=\widehat{MCB}\)

nên \(\widehat{ABN}=\widehat{ACM}\)

c: AM+MB=AB

AN+NC=AC

mà AB=AC

và MB=NC

nên AM=AN

Xét ΔABC có \(\dfrac{AM}{AB}=\dfrac{AN}{AC}\)

nên MN//BC

d: Ta có: \(\widehat{MCB}=\widehat{NBC}\)

=>\(\widehat{OBC}=\widehat{OCB}\)

Xét ΔOBC có \(\widehat{OBC}=\widehat{OCB}\)

nên ΔOBC cân tại O

=>OB=OC

=>O nằm trên đường trung trực của BC(1)

AB=AC

=>A nằm trên đường trung trực của BC(2)

IB=IC

=>I nằm trên đường trung trực của BC(3)

Từ (1),(2),(3) suy ra A,O,I thẳng hàng

26 tháng 10 2021

a: Xét ΔMAC và ΔNAB có 

MA=NA

\(\widehat{MAC}\) chung

AC=AB

Do đó: ΔMAC=ΔNAB

24 tháng 1 2021

Bài 17 :Cho tam giác ABC cân tại A. Gọi M,N lần lượt là trung điểm của AB,AC. Chứng minh : a) MN // BC b) BN=CM Bài 18 : Cho tam giác ABC cân tại A. Gọi M,N tk nha

a) Ta có: \(AM=MB=\dfrac{AB}{2}\)(M là trung điểm của AB)

\(AN=NC=\dfrac{AC}{2}\)(N là trung điểm của AC)

mà AB=AC(ΔABC cân tại A)

nên AM=MB=AN=NC

Xét ΔABN và ΔACM có 

AB=AC(ΔABC cân tại A)

\(\widehat{BAN}\) chung

AN=AM(cmt)

Do đó: ΔABN=ΔACM(c-g-c)

b) Xét ΔANM có AM=AN(cmt)

nên ΔAMN cân tại A(Định nghĩa tam giác cân)

hay \(\widehat{AMN}=\dfrac{180^0-\widehat{A}}{2}\)(Số đo của một góc ở đáy trong ΔAMN cân tại A)(1)

Ta có: ΔABC cân tại A(gt)

nên \(\widehat{ABC}=\dfrac{180^0-\widehat{A}}{2}\)(Số đoc của một góc ở đáy trong ΔABC cân tại A)(2)

Từ (1) và (2) suy ra \(\widehat{AMN}=\widehat{ABC}\)

mà \(\widehat{AMN}\) và \(\widehat{ABC}\) là hai góc ở vị trí đồng vị

nên MN//BC(Dấu hiệu nhận biết hai đường thẳng song song)

Bài 1 Cho tam giác ABC O là trung điểm của BD  lấy điểm M C  và N sao cho B O D lần lượt là trung điểm của AM AC và AN Chứng minha BC = AD và BC song song với adB tam giác ABD bằng tam giác BMCc MC song song với BDD ba điểm  M, C ,N thẳng hàngBài 4 Cho tam giác ABC cân tại A và đường cao AH kẻ HD vuông góc với AB D thuộc AB kẻ HE vuông góc với AC E thuộc ACa chứng minh tam giác BHD bằng tam giác CHEb chứng minh AH là...
Đọc tiếp

Bài 1 Cho tam giác ABC O là trung điểm của BD  lấy điểm M C  và N sao cho B O D lần lượt là trung điểm của AM AC và AN

 Chứng minh

a BC = AD và BC song song với ad

B tam giác ABD bằng tam giác BMC

c MC song song với BD

D ba điểm  M, C ,N thẳng hàng

Bài 4 Cho tam giác ABC cân tại A và đường cao AH kẻ HD vuông góc với AB D thuộc AB kẻ HE vuông góc với AC E thuộc AC

a chứng minh tam giác BHD bằng tam giác CHE

b chứng minh AH là đường trung trực của DE

c trên tia đối của tia HD lấy điểm F sao cho HF = HD chứng minh tam giác EDF vuông

Bài 3  cho 3 điểm phân biệt thẳng hàng b m c theo thứ tự đó và một điểm A nằm ngoài đường thẳng bc cho biết tam giác ABM bằng tam giác ACM  

Chứng minh

a AB = AC và  góc B bằng góc C

b AM vuông góc với BC

c M là trung điểm của BC

d tia AM  là phân giác của góc A

Các bạn giúp mình nha mình đang cần gấp mai mình kiểm tra môn toán rồi!

HIHI thank bn

0

a: Xét ΔABN và ΔACM có

AB=AC

góc BAN chung

AN=AM

Do đo: ΔABN=ΔACM

b: Xét ΔMBC và ΔNCB có

MB=NC

góc MBC=góc NCB

BC chung

Do đó: ΔMBC=ΔNCB

=>góc OBC=góc OCB

=>OB=OC

c: ΔABC cân tại A

mà AF là trung tuyến

nên AF là trung trực của BC

mà O nằm trên trung trực của BC

nên A,O,F thẳng hàng