Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABH và ΔACH có
AB=AC
AH chung
BH=CH
Do đó: ΔABH=ΔACH
a: Xét ΔABH và ΔACH có
AB=AC
AH chung
BH=CH
Do đó: ΔABH=ΔACH
b: Xét tứ giác AHCK có
E là trung điểm của AC
E là trung điểm của HK
Do đó: AHCK là hình bình hành
Suy ra: AK//HC
hay AK//BC
a, xét tam giác ACH và tam giác KCH có : CH chung
góc AHC = góc KHC = 90
AH = HK do H là trđ của AK (gt)
=> tam giác ACH = tam giác KCH (2cgv)
b, xét tam giác AEC và tam giác DEB có : góc BED = góc CEA (đối đỉnh)
BE= EC do E là trđ của BC (GT)
AE = ED do E là trđ của AD (gt)
=> tam giác AEC = tam giác DEB (c-g-c)
=> BD = AC (đn)
tam giác ACH = tam giác KCH (câu a) => AC = CK (đn)
=> BD = CK (tcbc)
c, xét tam giác AEH và tam giác KEH có: EH chung
AH = HK (câu a)
góc AHE = góc KHE = 90
=> tam giác AEH = tam giác KEH (2cgv)
=> góc AEH = góc KEH mà EH nằm giữa EA và EK
=> EH là phân giác của góc AEK (đn)
AD = AE nhé bạn
a) Vì H là trung điểm của BC (gt) nên BH = CH
Xét tam giác ABH và tam giác ACH có:
AB = AC (gt)
AH cạnh chung
BH = CH (chứng minh trên)
=> Tam giác ABH = tam giác ACH (c.c.c) (đpcm)
b) Ta có: góc AHB = góc AHC (vì tam giác ABH = tam giác ACH)
Mà góc AHB + góc AHC = 180o (2 góc kề bù)
=> Góc AHB = góc AHC = 180o : 2 = 90o
=> AH _|_ BC (đpcm)
c) Ta có: AB = AC (gt)
BD = CE (gt)
=> AB + BD = AC + CE
=> AD = AE (đpcm)
d) Xét tam giác ADK và tam giác ADE có:
DH = EK (vì K là trung điểm của DE)
DK cạnh chung
AD = AE (chứng minh trên)
=> Tam giác ADK = tam giác ADE (c.c.c)
=> Góc DAK = góc EAK
Vì tia AK nằm giữa 2 tia AD, AE nên AK là tia phân giác của góc DAE
hay AK là tia phân giác của góc BAC (1)
Lại có: góc BAH = góc CAH (vì tam giác ABH = tam giác ACH)
tia AH nằm giữa 2 tia AB, AC
=> AH là tia phân giác góc BAC (2)
Từ (1), (2) => 3 điểm A, H, K thẳng hàng
Xét tam giác ABH và tam giác KHC ta có
AH=HK (gt)
BH=HC ( H là trung điểm BC)
góc AHB=góc KHC (=90)
-> tam giác ABH= tam giác KHC (c-g-c)
b)
Xét tam giác ABH và tam giác AHC ta có
AH=AH (cạnh chung)
BH=HC ( H là trung điểm BC)
AB=AC (ggt)
-> tam giác ABH= tam giác AHC (c-c-c)
-> góc AHB= góc AHC (2 góc tương ứng)
mà góc AHB + góc AHC =180 ( 2 góc kề bù)
nên góc AHB + góc ABH=180
->2 góc AHB=180
-> góc AHB =180 :2 =90
=> AH vuông góc BC tại H
c) Xét tam giác BDH và tam giác HAB ta có
BH=BH ( cạnh chung)
góc DBH= góc BHA (=90)
góc DHB= goc1HBA ( 2 góc sole trong và AB//DH)
-> tam giác BDH=tam giác HAB ( g-c-g)
-> DH=AB ( 2 cạnh tương ứng)
d) ta có DH=AB (cmt)
KC=AB ( tam giác AHB= tam giác KHC)
-> DH = KC
ta có góc BAH = góc HKC ( tam giác AHB= tam giác KHC)
mà 2 góc nằm ở vị trí sole trong
nên AB//CK
mặt khác AB//DH (gt)
do đó CK//DH
Xét tam giác DHI và tam giác CKI ta có
HI=IK (I là trung điểm HK)
DH=Ck (cmt)
góc IHD=góc IKC (2 góc sole trong và DH//CK)
-> tam giác DHI= tam giác CKI (c-g-c)
-> góc DHI = góc CIK (2 góc tương ứng
mà góc CIK + góc HIC =180 ( 2 góc kề bù)
nên góc DHI+ góc HIC =180
-> góc DIC =180
-> D,I,C thẳng hàng
Giải
a) vì m la trung diểm của BC => BM=MC
Xét tam giac BAM va tam giac MAC có:
AB=AC(dề bài cho)
BM=MC(Chung minh tren)
AM la cạnh chung(de bai cho)
=>Tam giác BAM=tam giac MAC(c.c.c)
b)từ trên
=>góc BAM=góc MAC(hai goc tuong ung)
Tia AM nam giua goc BAC (1)
goc BAM=goc MAC(2)
từ (1) va (2)
=>AM la tia phan giac cua goc BAC
c)Còn nữa ......-->