Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét ∆ vuông ABC và ∆ vuông AED ta có :
AB = AD (gt)
AC = AD (gt)
=> ∆ABC = ∆AED ( 2 cgv)
=> BD = DE
b) Xét ∆ABD có :
BAC = 90°
=> AD\(\perp\)AE
Mà AB = AD (gt)
=> ∆ABD vuông cân tại A
=> BDC = 45°
Chứng minh tương tự ta có :
BCE = 45°
=> BDC = BCE = 45°
Mà 2 góc này ở vị trí so le trong
=> BD//CE
a) Xét hai tam giác vuông ABD và ACE có:
AB = AC (do ΔABCΔABC cân tại A)
AˆA^: góc chung
Vậy ΔABD=ΔACE(ch−gn)ΔABD=ΔACE(ch−gn)
b) ΔABCΔABC cân tại A
⇒⇒ AH là đường cao đồng thời là đường trung tuyến của BC
hay HB = HC
ΔBDCΔBDC có DH là đường trung tuyến ứng với cạnh huyền BC
⇒⇒ DH = HB = HC = BC2BC2
⇒⇒ ΔHDCΔHDC cân tại H.
c) ΔHDCΔHDC cân tại H có HM là đường cao đồng thời là đường trung tuyến
Vậy DM = MC (đpcm).
Đề sai => sửa :
Cho tam giác ABC cân tại A , góc A < 90 độ , đường cao BD và CE cắt nhau tại H ( D thuộc AC , E thuộc AB ) .
a) CM: Tam giác ABD = tam giác ACE
b) CM : tam giác BHC cân .
c) So sánh HB = HD
d)Trên tia đối của tia EH lấy điểm N sao cho NH < NC . Trên tia đối của tia DH lấy điểm M sao cho MH = NH . CM : BN , AH , CM đồng quy tại 1 điểm .
Giải :
a ,Vì EC là đường cao => \(EC\perp AB\Rightarrow\widehat{AEC}=\widehat{CEB}=90^0\)
Vì BD là đường cao => \(BD\perp AC\Rightarrow\widehat{ADB}=\widehat{BDC}=90^0\)
Xét \(\Delta ACE\)và \(\Delta ABD\)có :
AB = AC ( \(\Delta ABC\)cân tại A )
\(\widehat{AEC}=\widehat{ADB}=90^0\)
\(\widehat{A}\)chung
=> \(\Delta ACE\)= \(\Delta ABD\)( ch.gn )
=> \(\widehat{ABD}=\widehat{AEC}\)( 2 góc tương ứng )
b , Ta có : \(\widehat{ABC}=\widehat{ACB}\)( \(\Delta ABC\)cân tại A )
Mà : \(\widehat{ABD}+\widehat{DBC}=\widehat{ABC}\)
\(\widehat{ACE}+\widehat{ECB}=\widehat{ACB}\)
\(\widehat{ABD}=\widehat{AEC}\)(cmt)
=> \(\widehat{DBC}=\widehat{ECB}\)
=> \(\Delta HBC\)cân tại H .
c , Xét \(\Delta DHC\)có \(\widehat{ADB}=90^0\)
=> HC là cạnh huyền ( cạnh lớn nhất )
=> HC > DH
Mà DB = DC (\(\Delta HBC\) cân tại H )
=> HB > HD
d , mik cx 0 bt :>
Bạn tham khảo tại link dưới đây nhé.
Câu hỏi của Nguyễn Thị Ngọc Ánh - Toán lớp 7 - Học toán với OnlineMath (https://olm.vn/hoi-dap/question/1172749.html)
Trả lời:
1.a) Vì tam giác ABC cân tại A
=>B=ACD
Mà ACD=ECN(đối đỉnh)
=>B=ECN
Vì AB=AC(tam giác ABC cân tại A)
Mà AC=IC
=>AB=IC
Xét tam giác ABD và tam giác ICE có:
AB=IC(c/m trên)
B=ECN(c/m trên)
BD=CE(gt)
=>tam giác ABD=tam giác ICE(c.g.c)
2.
Xét tam giác BMD và tam giác CEN có:
BDM=CNE(=90 độ)
BD=CE(gt)
B=ECN(c/m trên)
=>tam giác BDM=tam giác CEN(g.c.g)
=>BM=CN(2 cạnh tương ứng)
~Học tốt!~
Đề bài sai