Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì BC có độ dài lớn nhất nên đề bài tương đương với: \(\sqrt[3]{BD^2}+\sqrt[3]{EC^2}=\sqrt[3]{BC^2}\)(Định lí Pythagoras đảo)
Lập phương 2 vế: \(BD^2+EC^2+3\sqrt[3]{\left(BD.EC\right)^2}\left(\sqrt[3]{BD^2}+\sqrt[3]{EC^2}\right)=BC^2\)
Ôn lại các hệ thức lượng cho tam giác vuông vì sắp tới mình sẽ dùng 1 chuỗi hệ thức đấy:
+Tam giác AHD vuông tại H, đường cao DH: \(AH^2=AD.AB,BH^2=BD.BA\)
+Tam giác AHC vuông tại H, đường cao EH: \(AH^2=AC.AE,CH^2=CA.CE\)
+Tam giác ABC vuông tại A, đường cao AH: \(AH^2=HB.HC,AH.BC=AB.AC,BC^2=AB^2+AC^2\)
$ ADHE là hình chữ nhật nên AD=HE
$ Tam giác AHE vuông tại H nên \(AH^2=AE^2+HE^2\)
Ok, giờ triển thoi: \(BD^2+EC^2+3\sqrt[3]{\left(BD.EC\right)^2}\left(\sqrt[3]{BD^2}+\sqrt[3]{EC^2}\right)=BC^2\)
\(\Leftrightarrow\left(AB-AD\right)^2+\left(AC-AE\right)^2+3\sqrt[3]{\left(BD.CE\right)^2}.\sqrt[3]{BC^2}=BC^2\)
\(\Leftrightarrow\left(AB^2+AC^2\right)+\left(AD^2+AE^2\right)-2\left(AB.AD+AC.AE\right)+3\sqrt[3]{\left(BD.CE.BC\right)^2}=BC^2\)
\(\Leftrightarrow BC^2+\left(AE^2+HE^2\right)-2\left(AH^2+AH^2\right)+3\sqrt[3]{\left(BD.CE.BC\right)^2}=BC^2\)
\(\Leftrightarrow AH^2-4AH^2-3\sqrt[3]{\left(BD.CE.BC\right)^2}=0\)
\(\Leftrightarrow3\sqrt[3]{\left(BD.CE.BC\right)^2}=3AH^2\)
\(\Leftrightarrow BD.CE.BC=AH^3\)
\(\Leftrightarrow BD.CE.BC.AH=AH^4\)
\(\Leftrightarrow\left(BD.BA\right)\left(CE.CA\right)=AH^4\)
\(\Leftrightarrow BH^2.CH^2=AH^4\Leftrightarrow BH.CH=AH^2\)---> Luôn đúng
Vậy giả thiết đúng.
(Bài dài giải mệt vler !!)
Gọi hình chiếu của B và C trên đường thẳng EF lần lượt là G và K
Ta có: AE và AF là 2 tiếp tuyến của (I) => AE=AF => \(\Delta\)EAF cân đỉnh A
=> ^AEF=^AFE => ^GEB=^KFC (2 góc đối đỉnh)
=> \(\Delta\)BGE ~ \(\Delta\)CKF (g.g) => \(\frac{BE}{CF}=\frac{GE}{KF}\)
Mà \(\frac{BE}{CF}=\frac{BD}{CD}\)(Vì BE=BD và CF=CD theo t/c tiếp tuyến)
\(\Rightarrow\frac{BD}{CD}=\frac{GE}{KF}\). Lại có: Tứ giác BGKC là hình thang có DH//BG//CK
\(\Rightarrow\frac{BD}{CD}=\frac{GH}{KH}=\frac{GE}{KF}=\frac{GH-GE}{KH-KF}=\frac{EH}{FH}\)(T/c dãy tỉ số bằng nhau)
\(\Rightarrow\frac{BE}{CF}=\frac{EH}{FH}\)
Xét \(\Delta\)BEH và \(\Delta\)CFH: ^BEH=^CFH (Bù 2 góc ^AEF và ^AFE bằng nhau); \(\frac{BE}{CF}=\frac{EH}{FH}\)
=> \(\Delta\)BEH ~ \(\Delta\)CFH (c.g.c) => ^BHE=^CHF => 900 - ^BHE = 900 - ^CHF
=> ^BHD=^CHD => HD là phân giác ^BHC (đpcm).
a: Xét (E) có
ΔHMB nội tiếp
HB là đường kính
Do đó: ΔHMB vuông tại M
Xét (I) có
ΔCNH nội tiếp
CH là đường kính
Do đó: ΔCHN vuông tại N
Xét tứ giác AMHN có
góc AMH=góc ANH=góc MAN=90 độ
nên AMHN là hình chữ nhật
b: \(BC=\sqrt{6^2+8^2}=10\left(cm\right)\)
\(AH=\dfrac{6\cdot8}{10}=4.8\left(cm\right)\)
MN=AH=4,8cm
c: góc NME=góc NMH+góc EMH
=góc NAH+góc EHM
=góc HAC+góc HCA=90 độ
=>MN là tiếp tuyến của (E)
LƯU Ý
Các bạn học sinh KHÔNG ĐƯỢC đăng các câu hỏi không liên quan đến Toán, hoặc các bài toán linh tinh gây nhiễu diễn đàn. Online Math có thể áp dụng các biện pháp như trừ điểm, thậm chí khóa vĩnh viễn tài khoản của bạn nếu vi phạm nội quy nhiều lần.
Chuyên mục Giúp tôi giải toán dành cho những bạn gặp bài toán khó hoặc có bài toán hay muốn chia sẻ. Bởi vậy các bạn học sinh chú ý không nên gửi bài linh tinh, không được có các hành vi nhằm gian lận điểm hỏi đáp như tạo câu hỏi và tự trả lời rồi chọn đúng.
Mỗi thành viên được gửi tối đa 5 câu hỏi trong 1 ngày
Các câu hỏi không liên quan đến toán lớp 1 - 9 các bạn có thể gửi lên trang web h.vn để được giải đáp tốt hơn.