Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c) Tam giác AMB cân tại M => góc ABM = góc BAM (1)
Vì MK//AB ( cùng vuông góc AB) => góc ABM = góc AMK (2)
Từ (1) và (2) => góc ABM = góc AMK => tg vuông AHB đồng dạng tg vuông AKM
d) Tg AHB đd tg AKM => AH/AK = AB/AM => AH.AM = AK.AB (3)
Mặt khác vì tg AMC cân tại M có MK là đường cao => MK là đg trung tuyến => AK = CK; AM = BM (4)
Từ (3) và (4) => AH.BM = CK.AB
a)Xét △ABC vuông tại A (gt)
=> BC2 = AB2 + AC2 (định lý Pytago)
BC2 = 52 + 122 = 25 + 144 = 169
=> BC = \(\sqrt{169}\) = 13 cm
Xét △ABC có BF là tia phân giác của góc ABC (gt)
=>\(\dfrac{AF}{AB}\) = \(\dfrac{FC}{BC}\) (tính chất đường phân giác)
=>\(\dfrac{AF}{5}\) = \(\dfrac{FC}{13}\) và AF + FC = AC = 12
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\dfrac{AF}{5}\) = \(\dfrac{FC}{13}\) = \(\dfrac{AF+FC}{5+13}\) = \(\dfrac{AC}{18}\) = \(\dfrac{2}{3}\)
=> AF = \(\dfrac{2}{3}\) x 5 = 3,33 cm và FC = \(\dfrac{2}{3}\) x 13 = 8,67 cm
b)Xét △ABF và △HBE có:
góc ABF bằng góc HBE (BF là tia phân giác của góc ABC)
góc BAF bằng góc BHE bằng 90o (tam giác ABC vuông tại A và AH ⊥ BC)
=> △ABF ∼ △HBE (g.g)
c) Vì △ABF ∼ △HBE (câu b)
=> góc BFA bằng góc BEH
mà góc AEF bằng góc BEH (2 góc đối đỉnh)
=> góc BFA bằng góc AEF
=> △AEF cân tại A
d)Xét △ABC và △AHB có:
góc ABC chung
góc BAC bằng góc BHA bằng 90o (tam giác ABC vuông tại A và AH ⊥ BC)
=> △ABC ∼ △HBA (g.g)
=> \(\dfrac{AB}{BC}\) = \(\dfrac{BH}{AB}\) (1)
Xét △ABH có BE là tia phân giác của góc ABC (gt)
=>\(\dfrac{HE}{AE}\) = \(\dfrac{BH}{AB}\) (2) (tính chất đường phân giác)
Từ (1), (2) => \(\dfrac{AB}{BC}\) = \(\dfrac{HE}{AE}\)
=> AB.AE=BC.HE(chắc vậy?)
a: \(BC=\sqrt{12^2+16^2}=20\left(cm\right)\)
AH=12*16/20=192/20=9,6cm
b: Xét ΔBHA vuông tại H và ΔBAC vuông tại A có
góc B chung
=>ΔBHA đồng dạng với ΔBAC
a: BC=căn 6^2+8^2=10cm
AD là phân giác
=>DB/AB=DC/AC
=>DB/3=DC/4=(DB+DC)/(3+4)=10/7
=>DB=30/7cm; DC=40/7cm
b: Xét ΔAHB vuông tại H và ΔCHA vuông tại H có
góc HAB=góc HCA
=>ΔAHB đồng dạng với ΔCHA
c: AH=8*6/10=4,8cm
HB=6^2/10=3,6cm
CH=10-3,6=6,4cm
S AHB=1/2*4,8*3,6=8,64cm2
S AHC=1/2*4,8*6,4=15,36cm2