Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét ΔAHB vuông tại H và ΔAHC vuông tại H có
AB=AC(ΔABC cân tại A)
AH chung
Do đó: ΔAHB=ΔAHC(cạnh huyền-cạnh góc vuông)
b) Xét ΔDHB vuông tại D và ΔEHC vuông tại E có
HB=HC(ΔAHB=ΔAHC)
\(\widehat{DBH}=\widehat{ECH}\)(hai góc ở đáy của ΔABC cân tại A)
Do đó: ΔDHB=ΔEHC(cạnh huyền-góc nhọn)
nên \(\widehat{DHB}=\widehat{EHC}\)(hai góc tương ứng)
mà \(\widehat{DHB}=\widehat{FHC}\)(hai góc đối đỉnh)
nên \(\widehat{EHC}=\widehat{FHC}\)
mà tia HC nằm giữa hai tia HE,HF
nên HC là tia phân giác của \(\widehat{EHF}\)(đpcm)
Bài 1:
a)+ Vì AB = ACNÊN
==>Tam giác ABC cân tại A
==>góc ABI = góc ACI
+ Xét tam giác ABI và tam giác ACI có:
AI là cạch chung
AB = AC(gt)
BI = IC ( I là trung điểm của BC)
Vậy tam giác ABI = tam giác ACI (c.c.c)
==> góc BAI = góc CAI ( 2 góc tương ứng )
==>AI là tia phân giác của góc BAC
b)
Xét tam giác BAM và tam giác BAN có:
AB = AC (gt)
góc B = góc C (cmt)
BM = CN ( gt )
Vậy tam giác BAM = tam giác CAN (c.g.c)
==> AM = AN (2 cạnh tương ứng)
c)
vì tam giác BAI = tam giác CAI (cmt)
==>góc AIB = góc AIC (2 góc tương ứng)
Mà góc AIB+ góc AIC = 180độ ( kề bù)
nên AIB=AIC=180:2=90
==>AI vuông góc với BC
Bài 3
a) Xét tam giác ABD vuông tại D và tam giác ACE vuông tại E có
AB=AC( vì tam giác ABC cân tại A)
Góc A chung
=> Tam giác ABD= tam giác ACE ( cạnh huyền- góc nhọn)
b) Có tam giác ABD= tam giác ACE( theo câu a)
=> AE=AD ( 2 cạnh tương ứng)
=> Tam giác AED cân tại A
c) Xét các tam giác vuông AEH và ADH có
Cạnh huyền AH chung
AE=AD
=> Tam giác AEH=tam giác ADH ( cạnh huyền- cạnh góc vuông)
=>HE=HD
Ta có AE=AD và HE=HD hay AH là đường trung trực của ED
d) Ta có AB=AC, AE=AD
=>AB-AE=AC-AD
=>EB=DC
Xét tam giác EBC vuông tại E và tam giác DCK vuông tại D có
BD=DK
EB=Dc
=> tam giác EBC= tam giác DCK ( 2 cạnh góc vuông)
=> Góc ECB= góc DEC ( 2 góc tương ứng)
Bài 1:
Xét tam giác ABM và tam giác ACM có:
AB=AC(tam giác ABC cân tại A)
BM=MC(gt)
AM cạnh chung
Suy ra tam giác ABM= tam giác ACM (c-c-c)
b) Xét hai tam giác vuông MBH và MCK có:
BM=MC(gt)
góc ABC=góc ACB (tam giác ABC cân tại A)
Suy ra tam giác MBH= tam giác MCK (ch-gn)
Suy ra BH=CK
c) MK vuông góc AC (gt)
BP vuông góc AC (gt)
Suy ra MK sông song BD
Suy ra góc B1= góc M2 (đồng vị)
Mà M1=M2(Tam giác HBM= tam giác KCM)
Suy ra góc B1= góc M1
Suy ra tam giác IBM cân
xong bài 1 đẻ bài 2 mình nghĩ tiếp
\(a,Xét\Delta AHBvà\Delta AHMcó\)
\(AB=AM\left(gt\right)\)
\(\widehat{A1}=\widehat{A2}\left(AHlàtiaphângiáccủa\widehat{A}\right)\)
\(AHlàcạnhchung\)
\(\Rightarrow\Delta AHB=\Delta AHM\left(c-g-c\right)\left(đpcm\right)\)
\(b,Tacó\widehat{ABH}+\widehat{HBD}=180^0\left(k/bù\right)\)
\(Và:\widehat{AMH}+\widehat{HMC}=180^0\left(kề/bù\right)\)
\(Mà:\widehat{ABH}=\widehat{AMH}\left(\Delta ABH=\Delta AMH\right)\)
\(\Rightarrow\widehat{HBD}=\widehat{HMC}\)
\(Xét\Delta BHDvà\Delta MHCcó:\)
\(BH=MH\left(\Delta AHB=\Delta AHM\right)\)
\(\widehat{BHD}=\widehat{MHC}\left(đ/đỉnh\right)\)
\(\widehat{HBD}=\widehat{HMC}\left(cmt\right)\)
\(\Rightarrow\Delta BHD=\Delta MHC\left(g-c-c\right)\)
\(\Rightarrow HD=HC\left(2c.t.ứ\right)\)
Lại có: \(\left\{{}\begin{matrix}BC=BH+HC\\MD=MH+HD\end{matrix}\right.\)
Mà: \(\left\{{}\begin{matrix}BH=MH\left(cmt\right)\\HC=HD\left(cmt\right)\end{matrix}\right.\)
\(MD=BC\left(đpcm\right)\)
\(c,Chứngminhtươngtựtađược:AD=AC\)
\(Xét\Delta ADHvà\Delta ACHcó:\)
\(\widehat{A1}=\widehat{A2}\)
\(AD=AC\left(cmt\right)\)
\(AHlàcạnhchung\)
\(\Rightarrow\Delta ADH=\Delta ACH\left(c-g-c\right)\)
\(\Rightarrow\widehat{AHD}=\widehat{AHC}\left(2.g.t.ứ\right)\)
\(Mà:\widehat{AHD}+\widehat{AHC}=180^0\)
\(\Rightarrow\widehat{AHD}=\widehat{AHC}=\frac{180^0}{2}=90^0\)
\(\Rightarrow AH\perp CD\)