K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Trl:

a) Vì I thuộc đường trung trực của BC và AD(gt))

=> IB=IC và IA=ID (theo định lí đường trung trực).

Xét 2 ΔAIB và DIC có:

AI=DI(cmt)

AB=DC(gt)

IB=IC(cmt)

=> ΔAIB=ΔDIC(c−c−c).

b) Theo câu a) ta có ΔAIB=ΔDIC

=> BAIˆ=CDIˆ (2 góc tương ứng).

Xét ΔADIcó:

IA=ID(cmt)

=> ΔADI cân tại I.

=> ADIˆ=DAIˆ(tính chất tam giác cân).

Hay CDIˆ=CAIˆ.

Mà BAIˆ=CDIˆ(cmt)

=> BAIˆ=CAIˆ

=> AI là tia phân giác của BACˆ.

                                                          ~Học tốt!~

23 tháng 1 2022

Answer:

Bài 1:

Vì AB = AC nên tam giác ABC cân tại A

=> Góc ABC = góc ACB = (180 độ - góc BAC) : 2 = 30 độ

Ta gọi DF là trung trực của AC

=> DF vuông góc AC = F; FC = FA

Mà DF là trung trực của AC

=> Góc ADA = 2 góc CDF = 2 . (180 độ - góc DCF - góc CFD) = 120 độ

Xét tam giác ACE và tam giác BAD:

BD = AE

AC = AB

Góc EAC = góc DBA = 30 độ

=> Tam giác ACE = tam giác BAD (c.g.c)

=> Góc CED = góc ADB = góc EDC = 180 độ - góc CDA = 60 độ

Bài 2:

Có: IK là trung trực của BC

=> IB = IC

Tương tự ID = IA mà AB = CD

=> Tam giác IAB = tam giác IDC (c.c.c)

=> Góc IAB = góc IDA = góc IAC

=> AI là tia phân giác của góc BAD

Mà AI là tia phân giác của góc A

IE vuông góc AB; IH vuông góc AC

=> IE = IH

\(\Rightarrow BE^2=IB^2-IE^2=IC^2-IH^2=HC^2\)

=> BE = HC

Mà IE = IH; góc IEA = góc IHA = 90 độ; góc EAI = góc IAH

=> Tam giác AEI = tam giác AHI (g.c.g)

=> AE = AH mà IE = IH

=> IA là trung trực của EH

Có: CF song song AB nên góc FHC = góc AHE = góc AEH = góc HFC

=> Tam giác CHF cân ở C

=> CF = CH

=> CF = BE

Mà KB = KC; góc EBK = góc KCF

=> Tam giác BKE = tam giác CKF (c.g.c)

=> Góc BKE = góc FKC

=> E, F, K thẳng hàng

a: Xét ΔIAB và ΔIDC có

IA=ID

AB=DC

IB=IC

=>ΔIAB=ΔIDC

=>góc IAB=góc IDC=góc IAD

=>AI là phân giác của góc BAC
b: Xét ΔAEI vuông tại E và ΔAHI vuông tại H có

AI chung

góc EAI=góc HAI

=>ΔAEI=ΔAHI

=>AE=AH; IE=IH

=>AI là trung trực của EH

30 tháng 1 2022

5. ta có:

\(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a+b}{c+d}\)     \(a.b=c.d\)

\(\left(\dfrac{a+b}{c+d}\right)^2=\dfrac{\left(a+b\right)^2-2ab}{\left(c+d\right)^2-2cd}\)

Mà a+b = c+ d; ab = cd

=> đfcm

 

Bài 4: 

a: Ta có: I nằm trên đường trung trực của AD

nên IA=ID

Ta có: I nằm trên đường trung trực của BC

nên IB=IC

b: Xét ΔIAB và ΔIDC có 

IA=ID

\(\widehat{AIB}=\widehat{DIC}\)

IB=IC

Do đó: ΔIAB=ΔIDC

Bài 5: Cho tam giác ABC, trung tuyến AM. Từ M kẻ đường thẳng song song với AB cắt AC tại N. Biết AN=MN; BN cắt AM ở O. Chứng minh:a) Tam giác ABC cân ở Ab) O là trọng tâm của tam giác ABCBài 6: Cho tam giác ABC vuông tại A, phân giác CD. Gọi H là hình chiếu của điểm B trên đường thẳng CD. Trên CD lấy điểm E sao cho H là trung điểm của DE. Gọi F là giao điểm của BH và CA. Chứng minh:a) Góc CEB= góc ADC và...
Đọc tiếp

Bài 5: Cho tam giác ABC, trung tuyến AM. Từ M kẻ đường thẳng song song với AB cắt AC tại N. Biết AN=MN; BN cắt AM ở O. Chứng minh:

a) Tam giác ABC cân ở A

b) O là trọng tâm của tam giác ABC

Bài 6: Cho tam giác ABC vuông tại A, phân giác CD. Gọi H là hình chiếu của điểm B trên đường thẳng CD. Trên CD lấy điểm E sao cho H là trung điểm của DE. Gọi F là giao điểm của BH và CA. Chứng minh:

a) Góc CEB= góc ADC và Góc EBH= góc ACD

b) BE vuông góc BC

C) DF song song BE

Bài 7: Cho tam giác ABC vuông tại A, có AC=12cm, BC-13cm. Gọi I là trung điểm của BC. Trên tia AI lấy điểm K sao cho IA=IK

a) Tính AB

b)Chứng minh rằng: Tam giác IAB= tam giác IKC, từ đó suy ra tam giác ACK là tam giác vuông

c) Gọi điểm M là trung điểm của AC.Chứng minh: MB=MK

d) MK cắt BC tại N,BM cắt AI tại E. Chứng minh: tam giác MEN cân;EN song song BK

Bài 8: Cho tam giác ABC vuông tại A, có AB= 8cm, BC= 17cm

a) Tính AC

b) Trung trực của BC cắt AC tại D và cắt AB tại F. Chứng minh: Góc DBC= góc DCB

c) Trên tia đối của tia DB lấy điểm E sao cho DE=DC. Chứng minh tam giác BEC vuông. Suy ra DF là phân giác của góc ADE

d) Chứng minh: BE vuông góc với FC

1
2 tháng 5 2016

dài thế bạn.

đọc xong  đề bài mình ngủ luôn

1. Cho tam giác ABC vuông tại A. tia phân giác góc B cắt AC tại D. từ A kẻ AE vuông góc BD tại E và cắt BC tại MA. chứng minh tam giác ABC bằng tam giác MBEB. chứng minh DM vuông góc với BCC .Kẻ AH vuông góc với BC tại I. Chứng minh AM là tia phân giác của góc IACcâu 2: Cho tam giác ABC cân tại A (góc A bé hơn 90 độ). vẽ tia phân giác AD của góc A (D thuộc BC)A. chứng minh tam giác ABD bằng tam giác ACDB. Vẽ...
Đọc tiếp

1. Cho tam giác ABC vuông tại A. tia phân giác góc B cắt AC tại D. từ A kẻ AE vuông góc BD tại E và cắt BC tại M

A. chứng minh tam giác ABC bằng tam giác MBE

B. chứng minh DM vuông góc với BC

C .Kẻ AH vuông góc với BC tại I. Chứng minh AM là tia phân giác của góc IAC

câu 2: Cho tam giác ABC cân tại A (góc A bé hơn 90 độ). vẽ tia phân giác AD của góc A (D thuộc BC)

A. chứng minh tam giác ABD bằng tam giác ACD

B. Vẽ đường trung tuyến của tam giác ABC cắt cạnh AC tại G. chứng minh G là trọng tâm của tam giác ABC

C. Gọi H là trung điểm của cạnh DC. qua h Vẽ đường thẳng vuông góc với cạnh DC cắt cạnh AC tại E. Chứng minh tam giác DEC cân

D. Chứng minh ba điểm B, G, E thẳng hàng

Câu 3 Cho tam giác ABC vuông tại A. Vẽ trung tuyến AM của tam giác ABC, Kẻ MH vuông góc với AC. Trên tia đối của tia MH đặt điểm  K sao cho MK bằng MH

a. chứng minh tam giác MHC bằng tam giác MKB và BK vuông góc với KH

B. Chứng minh AB song song với HK và BK = AH.

C. Vẽ BH cắt AB tại g. Gọi I là trung điểm của AB. Chứng minh ba điểm C, G, I thẳng hàng

câu4 Cho tam giác ABC vuông tại A. gọi M là trung điểm cạnh BC. trên tia đối của tia MA lấy điểm D sao cho MD = MA.

A . chứng minh tam giác MCD bằng tam giác MBD và AC song song với BD

B. Gọi I là trung điểm AM, J là trung điểm BM. AJ cắt BI tại G. Chứng minh tam giác GAB là tam giác cân

Câu 5 cho tam giác ABC vuông tại A (AB bé hơn AC). vẽ BD là tia phân giác của góc ABC (D thuộc AC). trên đoạn BC lấy điểm E sao cho BE bằng BA

a chứng minh tam giác ABD bằng tam giác EBD .Từ đó suy ra góc BED là góc vuông

b.  tia ED  cắt tia BA tại EF. Chứng minh tam giác BED cân

C. Chứng minh tam giác AFC bằng tam giác  ECF

D.Chứng minh: AB + AC >DE+BC

câu 6: Cho tam giác ABC vuông tại A. Vẽ đường phân phân giác BD của tam giác ABC và E là hình chiếu của D trên BC

a. chứng minh tam giác ABD bằng tam giác EBD và AE vuông góc với BD

B. Gọi giao điểm của hai đường thẳng ED và BA là F. Chứng minh tam giác ABC bằng tam giác AFC 

C. Qua A vẽ đường thẳng vuông góc với BC cắt CF tại G. Chứng minh ba điểm B, D, G thẳng hàng

câu 7: Cho tam giác ABC cân tại A (góc A bé hơn 90 độ). vẽ AD là phân giác của góc A (D thuộc BC)

A . Chứng minh tam giác ABD bằng tam giác ACD

B. lấy H là trung điểm của AB. Trên tia đối của tia HC lấy điểm K sao cho HK = HC. Chứng minh rằng AK = BC

c. CH cắt AD tại G. Chứng minh (BA+BC)÷6 >GH

4
28 tháng 4 2019

bài 1 đề bài có sai ko?

29 tháng 4 2019

Đề đúng nha bạn