K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔABI và ΔADI có

AB=AD
\(\widehat{BAI}=\widehat{DAI}\)

AI chung

Do đó: ΔABI=ΔADI

=>\(\widehat{BIA}=\widehat{DIA}\)

=>IA là phân giác của góc BID

b: Ta có: ΔABI=ΔADI

=>\(\widehat{ABI}=\widehat{ADI}\) và IB=ID

Ta có: \(\widehat{ABI}+\widehat{IBE}=180^0\)(hai góc kề bù)

\(\widehat{ADI}+\widehat{CDI}=180^0\)(hai góc kề bù)

mà \(\widehat{ABI}=\widehat{ADI}\)

nên \(\widehat{IBE}=\widehat{CDI}\)

Xét ΔIBE và ΔIDC có

\(\widehat{IBE}=\widehat{IDC}\)

IB=ID

\(\widehat{BIE}=\widehat{DIC}\)(hai góc đối đỉnh)

Do đó: ΔIBE=ΔIDC

=>BE=DC

Xét ΔAEC có \(\dfrac{AB}{BE}=\dfrac{AD}{DC}\)

nên BD//CE
 

30 tháng 12 2017

giờ mình giải cho bạn luôn đc ko, bạn có cần nữa ko để mình biết mình giải cho
 

30 tháng 12 2017
  • xét tam giác BAI và DAI
    ai cạnh chung
    bai= dai ( ai phân giác BAC)
    ab=ad ( gt )
    => tam giác bai= dai ( C.G.C)
    =>bi= di ( C.C.T.Ư )
    B) Tam giác bai = dai
    =>iba = ida ( c.g.t.ư)
     ta có :
    góc abi+ ibe = 180 ( 2 GÓC KỀ BÙ )
    ADI+ IDC= 180 ( 2 GÓC KỀ BÙ )
    Mà ABI = adi ( CMT)
    = > ibe = idc
    xét tam giác ibe và tam giác idc
    ib= id (GT)
     IBE= IDC (CMT)
    BIE= DIC ( 2 góc đối đỉnh)
    => Tam giác ibe= idc ( g.c.g)
    C) ta có bde= dec ( 2 góc sole trong)
    xét tam giác bde và dec
    be= dc ( TAM GIÁC BEI= DIC)
    de chung
    bde = dec (cmt)
    => tam giác bde = ced (c.g.c)
    => deb= cde (c.g,t.ư )
    MÀ  góc deb và cde là 2 góc ở vị trí sole trong nên 
    => bd song song ec

    TỰ VẼ HÌNH
    NHỚ K CHO MÌNH NHA MÌNH CAMON, CÓ GÌ CHƯA HIỂU THÌ VÀO NHẮN TIN
21 tháng 12 2021

a: Xét ΔABI và ΔADI có

AB=AD

\(\widehat{BAI}=\widehat{DAI}\)

AI chung

Do đó: ΔABI=ΔADI

Suy ra: IB=ID

a: Xét ΔADB và ΔADE có

AD chung

góc BAD=góc EAD

AB=AE

=>ΔADB=ΔADE

=>góc ABD=góc AED

b: Xét ΔAEF vuông tại A và ΔABC vuông tại A có

AE=AB

góc AEF=góc ABC

=>ΔAEF=ΔABC

=>AC=AF

1. Cho tam giác ABC vuông tại A. tia phân giác góc B cắt AC tại D. từ A kẻ AE vuông góc BD tại E và cắt BC tại MA. chứng minh tam giác ABC bằng tam giác MBEB. chứng minh DM vuông góc với BCC .Kẻ AH vuông góc với BC tại I. Chứng minh AM là tia phân giác của góc IACcâu 2: Cho tam giác ABC cân tại A (góc A bé hơn 90 độ). vẽ tia phân giác AD của góc A (D thuộc BC)A. chứng minh tam giác ABD bằng tam giác ACDB. Vẽ...
Đọc tiếp

1. Cho tam giác ABC vuông tại A. tia phân giác góc B cắt AC tại D. từ A kẻ AE vuông góc BD tại E và cắt BC tại M

A. chứng minh tam giác ABC bằng tam giác MBE

B. chứng minh DM vuông góc với BC

C .Kẻ AH vuông góc với BC tại I. Chứng minh AM là tia phân giác của góc IAC

câu 2: Cho tam giác ABC cân tại A (góc A bé hơn 90 độ). vẽ tia phân giác AD của góc A (D thuộc BC)

A. chứng minh tam giác ABD bằng tam giác ACD

B. Vẽ đường trung tuyến của tam giác ABC cắt cạnh AC tại G. chứng minh G là trọng tâm của tam giác ABC

C. Gọi H là trung điểm của cạnh DC. qua h Vẽ đường thẳng vuông góc với cạnh DC cắt cạnh AC tại E. Chứng minh tam giác DEC cân

D. Chứng minh ba điểm B, G, E thẳng hàng

Câu 3 Cho tam giác ABC vuông tại A. Vẽ trung tuyến AM của tam giác ABC, Kẻ MH vuông góc với AC. Trên tia đối của tia MH đặt điểm  K sao cho MK bằng MH

a. chứng minh tam giác MHC bằng tam giác MKB và BK vuông góc với KH

B. Chứng minh AB song song với HK và BK = AH.

C. Vẽ BH cắt AB tại g. Gọi I là trung điểm của AB. Chứng minh ba điểm C, G, I thẳng hàng

câu4 Cho tam giác ABC vuông tại A. gọi M là trung điểm cạnh BC. trên tia đối của tia MA lấy điểm D sao cho MD = MA.

A . chứng minh tam giác MCD bằng tam giác MBD và AC song song với BD

B. Gọi I là trung điểm AM, J là trung điểm BM. AJ cắt BI tại G. Chứng minh tam giác GAB là tam giác cân

Câu 5 cho tam giác ABC vuông tại A (AB bé hơn AC). vẽ BD là tia phân giác của góc ABC (D thuộc AC). trên đoạn BC lấy điểm E sao cho BE bằng BA

a chứng minh tam giác ABD bằng tam giác EBD .Từ đó suy ra góc BED là góc vuông

b.  tia ED  cắt tia BA tại EF. Chứng minh tam giác BED cân

C. Chứng minh tam giác AFC bằng tam giác  ECF

D.Chứng minh: AB + AC >DE+BC

câu 6: Cho tam giác ABC vuông tại A. Vẽ đường phân phân giác BD của tam giác ABC và E là hình chiếu của D trên BC

a. chứng minh tam giác ABD bằng tam giác EBD và AE vuông góc với BD

B. Gọi giao điểm của hai đường thẳng ED và BA là F. Chứng minh tam giác ABC bằng tam giác AFC 

C. Qua A vẽ đường thẳng vuông góc với BC cắt CF tại G. Chứng minh ba điểm B, D, G thẳng hàng

câu 7: Cho tam giác ABC cân tại A (góc A bé hơn 90 độ). vẽ AD là phân giác của góc A (D thuộc BC)

A . Chứng minh tam giác ABD bằng tam giác ACD

B. lấy H là trung điểm của AB. Trên tia đối của tia HC lấy điểm K sao cho HK = HC. Chứng minh rằng AK = BC

c. CH cắt AD tại G. Chứng minh (BA+BC)÷6 >GH

4
28 tháng 4 2019

bài 1 đề bài có sai ko?

29 tháng 4 2019

Đề đúng nha bạn

19 tháng 12 2020

Bạn chú ý viết cách phần cho và phần yêu cầu.

a/ Xét t/g ABI và t/g ADI có

AI : chung

\(\widehat{BAI}=\widehat{CAI}\) (AI là pg góc BAC)

AB = AD (GT)

=> t/g ABI = t/g ADI (c.g.c)

=> BI = DI (2 cạnh t/ứ)

b/ Có t/g ABI = t/g ADI

=> \(\widehat{ABI}=\widehat{ADI}\)(2 góc t/ứ)

=> \(180^o-\widehat{ABI}=180^o-\widehat{ADI}\)

=> \(\widehat{IBK}=\widehat{IDC}\) Xét t/g BIK và t/g DIC có

\(\widehat{IBK}=\widehat{IDC}\)

IB = DI (cmt)

\(\widehat{BIK}=\widehat{DIC}\)(đối đỉnh)

=> t/g BIK = t/g DIC (g.c.g)

c/ Có t/g BIK = t/g DIC

=> BK = DC (2 cạnh t/ứ) => AB + BK = DC + AD

=> AK = AC

=> t/g AKC cân tại A 

Mà AI là pg góc BAC (K thuộc AB)

=> AI đồng thời là đường cao t/g AKC

=> AI ⊥ KC Mà BH ⊥ KC

=> AI // BH

19 tháng 12 2020

bạn tự vẽ hình nhá

Vì AI là tia phân giác ⇔ \(\widehat{BAI}=\widehat{DAI}=\dfrac{\widehat{BAC}}{2}\)

a) xét Δ ABI và ΔADI, có:

 AB=AD

\(\widehat{BAI}=\widehat{DAI}\)  (cmt)    

AI chung

⇒Δ ABI  =Δ ADI (c.g.c)

⇒BI=DI (2 cạnh t/ứng) (đpcm)

b) Do Δ ABI  =Δ ADI (cmt) ⇒ \(\widehat{ABI}=\widehat{ADI}\)

Có: \(\widehat{ABI}+\widehat{IBK}\) =180(2 góc kề bù)

      \(\widehat{ADI}+\widehat{IDC}\) =180(2 góc kề bù)

Mà \(\widehat{ABI}=\widehat{ADI}\) (cmt) ⇒ \(\widehat{IBK}=\widehat{IDC}\)

Vì \(\widehat{BIK}\) và \(\widehat{DIC}\) là 2 góc đối đỉnh ⇒ \(\widehat{BIK}\) =\(\widehat{DIC}\)

xét Δ BKI và Δ DCI có:

\(\widehat{IBK}=\widehat{IDC}\) (cmt)

BI=ID (cmt)

\(\widehat{BIK}\) =\(\widehat{DIC}\) (cmt)

⇒Δ BKI = Δ DCI (g.c.g) (đpcm)

c) Từ Δ BKI = Δ DCI (cmt) ⇒ BK=DC

Có AB=AD (gt) ; BK=DC (cmt)

⇔AB+BK=AD+DC

⇔AK=AC

⇒Δ ACK cân tại A.

Mà AI là phân giác của \(\widehat{KAC}\) (gt)

⇒AI vừa là đường phân giác vừa là đường cao của Δ ACK.

⇒AI ⊥ CK. mà BH ⊥ CK (gt)

⇒AI // BH (đpcm)

 

9 tháng 1 2019

- Ngu ít thôi =)

9 tháng 1 2019

A B C D I E

CM: a) Xét tam giác ABI và tam giác ADI

có AB = AD (gt)

góc BAI = góc IAD (gt)

AI : chung

=> tam giác ABI = tam giác ADI (c.g.c)

=> BI = ID (hai cạnh tương ứng)

b) Ta có: tam giác ABI = tam giác ADI (cmt)

=> góc ABI = góc ADI (hai góc tương ứng) (1)

Mà góc ABI + góc IBE = 1800 (2)

      góc ADI + góc IDC = 1800 (3)

Từ (1), (2),(3) suy ra góc IBE = góc IDC

Xét tam giác IBE và tam giác IDC

có góc EIB = góc DIC (đối đỉnh)

  IB = ID (cmt)

  góc IBE = góc IDC (cmt)

=> tam giác IBE = tam giác IDC

c,d tự làm