K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 1 2019

A B C E F D M N

a) Xét \(\bigtriangleup BCE \) và \(\bigtriangleup CBD\) có:

\(EC=BD\left(gt\right)\)

\(\widehat{ECB}=\widehat{CBD}\)(2 góc sole trong do BD//CE)

\(BC-chung\)

\(\implies \bigtriangleup BCE=\bigtriangleup CBD(c.g.c)\)

b) Có: \(\bigtriangleup BCE=\bigtriangleup CBD(cmt)\)

\(\implies EB=CD\)(1)

Có: AB=CD(gt)

\(\Rightarrow\frac{1}{2}AB=\frac{1}{2}CD\Rightarrow EB=CF\)(2)

Từ (1) và (2) \(\implies CD=CF\)

Có: AB=CD(gt)

\(\implies \bigtriangleup ABC\) cân tại A

\(\Rightarrow\widehat{ABC}=\widehat{ACB}\)(2 góc ở đáy)

Xét \(\bigtriangleup ECB\) và \(\bigtriangleup FBC\)  có:

\(EB=FC(cmt)\)

\(\widehat{EBC}=\widehat{FCB}\left(cmt\right)\)

\(BC-chung\)

\(\implies \bigtriangleup ECB=\bigtriangleup FBC(c.g.c)\)

\(\implies BF=CE\)(2 cạnh tương ứng)

c) Có: \(\bigtriangleup BCE= \bigtriangleup CBD\)

\(\Rightarrow\widehat{EBC}=\widehat{DCB}\)

Gọi FD giao BC tại N

Xét \(\Delta FCN\) và \(\Delta DCN\) có;

\(CF=CD\)(câu b)

\(\widehat{FCN}=\widehat{DCN}\left(cmt\right)\)

\(CN-chung\)

\(\Rightarrow\Delta FCN=\Delta DCN\left(c.g.c\right)\)

\(\Rightarrow\widehat{CNF}=\widehat{CND}\)(2 góc tương ứng)

Mà \(\widehat{CNF}+\widehat{CND}=180^o\)(2 góc kề bù)

\(\Rightarrow\widehat{CNF}=\widehat{CND}=90^o\Rightarrow FD\perp BC\)

d) Xét \(\Delta EMC\) và \(\Delta DMB\) có:

\(EC=BD\left(gt\right)\)

\(\widehat{ECM}=\widehat{MBD}\)

\(MB=MC\)(vì M-trung điểm BC)

\(\Rightarrow\Delta EMC=\Delta DMB\left(c.g.c\right)\)

\(\Rightarrow\widehat{EMC}=\widehat{DMB}\)(2 góc tương ứng)

Mà \(\widehat{BME}+\widehat{EMC}=180^o\)(2 góc kề bù)

\(\Rightarrow\widehat{BME}+\widehat{DMB}=180^o\)

\(\Rightarrow EM\equiv MD\)

\(\implies E;M;D\) thẳng hàng

_Học tốt_

31 tháng 12 2018

d) Ta có EC // BD và EC = BD ( tam giác BCE = tam giác CBD )

=> tứ giác BECD là hình bình hành

=> ED giao BC tại trung điểm mỗi đường

Mà M là trung điểm của BC nên M là trung điểm của ED

=> M, E, D thẳng hàng ( đpcm )

Bài 1: 

a: Xét ΔABD vuông tại D và ΔACE vuông tại E có

AB=AC

\(\widehat{BAD}\) chung

Do đó: ΔABD=ΔACE

b: Ta có: ΔABD=ΔACE

nên AD=AE

Ta có: AE+EB=AB

AD+DC=AC

mà AB=AC
và AD=AE

nên EB=DC

Xét ΔEBO vuông tại E và ΔDCO vuông tại D có

EB=DC

\(\widehat{EBO}=\widehat{DCO}\)

Do đó: ΔEBO=ΔDCO

c: Xét ΔABO và ΔACO có

AB=AC

BO=CO

AO chung

DO đó:ΔABO=ΔACO

Suy ra: \(\widehat{BAO}=\widehat{CAO}\)

hay AO là tia phân giác của góc BAC

28 tháng 3 2021

Bài làm nè bạn nhớ k mình nha

answer-reply-image

answer-reply-image

31 tháng 3 2023

loading...  help mik vs

1) Tam giác ABC có I là giao điểm các tia phân giác của góc B và C, M là trung điểm của BC. Biết góc BIM=90 và BI=2IMa. Tính góc BACb.Vẽ IH vuông góc AC. Chứng minh rằng BA=3IH2)Cho tam giác ABC. Lấy các điểm D, E theo thứ tự trên các cạnh AB, AC sao cho BD=CE. Gọi M, N theo thứ tự là trung điểm của BC, DE. Chứng minh rằng đường thẳng MN tạo với các đường thẳng AB, AC các góc bằng nhau3)Cho tam giác ABC. Ở...
Đọc tiếp

1) Tam giác ABC có I là giao điểm các tia phân giác của góc B và C, M là trung điểm của BC. Biết góc BIM=90 và BI=2IM
a. Tính góc BAC
b.Vẽ IH vuông góc AC. Chứng minh rằng BA=3IH

2)Cho tam giác ABC. Lấy các điểm D, E theo thứ tự trên các cạnh AB, AC sao cho BD=CE. Gọi M, N theo thứ tự là trung điểm của BC, DE. Chứng minh rằng đường thẳng MN tạo với các đường thẳng AB, AC các góc bằng nhau

3)Cho tam giác ABC. Ở phía ngoài tam giác ấy vẽ tam giác đều ACE. Trên nửa mặt phẳng chứa C có bờ AB, vẽ tam giác đều ABD. Gọi H, K, M theo thứ tự là trung điểm của AB, AE, CD. Chứng minh rằng HKM là tam giác đều

4)Cho điểm M nằm trên đoạn thẳng AB. Trên cùng một nửa mặt phẳng bờ AB, vẽ các tam giác đều AMC, BMD. Gọi E, F theo thứ tự là trung điểm của AD, BC. Chứng minh rằng EF=1/2CD

0
8 tháng 4 2017

ủng hộ mk nha mọi người

Bài 1: Cho tam giác ABC cân tại A có đường phân giác CD. Qua D kẻ tia DF vuông góc với DC; DE song song với BC ( F thuộc BC; E thuộc AC ). Gọi M là giao điểm của DE với tia phân giác của góc BAC. CMR:1) CF= 2BD2) DM= 1/4 CF   Bài 2: Cho tam giác ABC cân tại A. Trên cạnh BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD=CE. Các đường thẳng vuông góc BC kẻ từ D và E cắt AB và AC lần lượt ở M và N....
Đọc tiếp

Bài 1: Cho tam giác ABC cân tại A có đường phân giác CD. Qua D kẻ tia DF vuông góc với DC; DE song song với BC ( F thuộc BC; E thuộc AC ). Gọi M là giao điểm của DE với tia phân giác của góc BAC. CMR:
1) CF= 2BD
2) DM= 1/4 CF
   Bài 2: Cho tam giác ABC cân tại A. Trên cạnh BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD=CE. Các đường thẳng vuông góc BC kẻ từ D và E cắt AB và AC lần lượt ở M và N. CMR:
1) DM=EN
2) Đường thẳng BC cắt MN tại I là trung điểm của MN
3) Đường thẳng vuông góc với MN tại I luôn đi qua một điểm cố định khi D thay đổi trên cạnh BC
    Bài 3: Cho tam giác ABC nhọn. Về phía ngoài của tam vẽ các tam giác vuông cân ABD và ACE đều vuông tại A. Gọi M và N lần lượt là trung điểm của BD và CE, P là trung trung điểm của BC. CMR: Tam giác PMN vuông cân

0