K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 4 2020

Hình bạn tự vẽ nhá

a) Ta có: MB = AB - AM = 6 - 2,25 = 3,75 (cm)

Gọi x là AN

NC là: 8 - x

Vì MN // BC, theo định lý Ta-lét ta có:

AMMB=ANNC⇔2,253,75=x8−x

⇔2,25(8−x)3,75(8−x)=3,75x3,75(8−x)

⇔2,25(8−x)=3,75x

⇔18−2,25x=3,75x

⇔−2,25x−3,75x=−18

⇔−6x=−18

⇔x=−18−6

⇔x=3

Nên NC = 8 - x = 8 - 3 = 5 (cm)

Vậy AN = 3cm, NC = 5cm

b) Ta có: MN // BC (gt) (1)

 MK // BI, theo hệ quả của định lý Ta-lét ta có:

AKAI=MKBI (2)

Từ (1)  KN // IC, theo hệ quả của định lý Ta-lét ta có:

AKAI=KNIC (3)

Từ (2), (3) ⇒MKBI=KNIC(4)

Mà BI = IC (gt) (5)

Từ (4), (5) ⇒MK=KN

Nên K là trung điểm của MN

4 tháng 4 2020

A B C M N I K

a) Ta có: MN // BC(gt) => \(\frac{AM}{AB}=\frac{AN}{AC}\)(theo định lí Ta - lét)

=> \(AN=\frac{AM}{AB}.AC=\frac{2,25}{6}\cdot8=3\)(cm)

 => \(CN=AC-AN=8-3=5\)

b) Ta có: MK // BI (gt) => \(\frac{MK}{BI}=\frac{AK}{AI}\)(theo định lí Ta - lét)

       NK // IC (gt) => \(\frac{KN}{IC}=\frac{AK}{AI}\)(theo định lí Ta - lét)

=> \(\frac{MK}{BI}=\frac{KN}{IC}\) mà BI = IC (gt)

=> MK = KN => K là trung điểm của MN

c) Do BN là tia p/giác của góc ABC => \(\frac{AB}{BC}=\frac{AN}{NC}\)(t/c đường p/giác của t/giác)

=> \(BC=AB:\frac{AN}{NC}=6:\frac{3}{5}=10\)(cm)

Ta có: BC2 = 102 = 100

   AB2 + AC2 = 62  + 82 = 100

=> BC2 = AB2 + AC2 => t/giác ABC vuông tại A (theo định lí Pi - ta - go đảo)

=> SABC = AB.AC/2 = 6.8/2 = 24 (cm2)

28 tháng 2 2020

Câu 3: 3.5đ. Cho tam giác ABC có AB = 6cm, AC = 8 cm. TRên cạnh AB lấy điểm M sao cho AM = 2,25 cm. Qua M kẻ đường thẳng song song với BC cắt cạnh AC tại N

a) Tính độ dài các đoạn thẳng AN, CN.

b) Gọi I là trung điểm của BC, K là giao điểm của AI và MN. Chứng minh K là trung điểm của MN

. c) Nếu BN là tia phân gíac của góc ABC thì diện tích tam giác ABC là bao nhiêu?

2 tháng 4 2020

a) Ta có

+)AM=AB-BM=6-3,75=2,25

+)MN//BC => \(\frac{AN}{AC}=\frac{AM}{AB}\)=> \(\frac{AN}{8}=\frac{2,25}{6}=\frac{3}{8}\)

=> AN=3(cm)

CN=AC-AN=8-3=5(cm)

b) +)MK//BI => \(\frac{MK}{BI}=\frac{AK}{AI}\left(1\right)\)

+) NK//CI => \(\frac{NK}{CI}=\frac{AK}{AI}\left(2\right)\)

(1)(2) => \(\frac{MK}{BI}=\frac{NK}{CI}\)mà MK=NK (K là trung điểm MN)

=> BI=CI => I là trung điểm BC

c) \(\Delta\)ABC vuông tại A

=> BC2=AB2+AC2=62+82=102 (Định lý Pytago)

=> BC=10cm

Ta có: \(\hept{\begin{cases}\frac{AN}{CN}=\frac{3}{5}\\\frac{AB}{BC}=\frac{6}{10}=\frac{3}{5}\end{cases}\Rightarrow\frac{AN}{CN}=\frac{AB}{AC}=\frac{3}{5}}\)

=> BN là phân giác \(\widehat{ABC}\)

https://olm.vn/hoi-dap/detail/5736377385.html

bn vào đi ~