Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi G' là giao của IJ và AA1
Xét \(\Delta\)ABC có B1;C1 lần lượt là trung điểm của cạnh AC và AB
=> B1C1 =\(\frac{BC}{2}\). Tương tự: A1B1=\(\frac{AB}{2}\); C1A1=\(\frac{CA}{2}\)
Xét \(\Delta\)A1B1C1 và \(\Delta\)ABC có: \(\frac{A_1B_1}{AB}=\frac{B_1C_1}{BC}=\frac{C_1A_1}{CA}\left(=\frac{1}{2}\right)\)
Do đó tam giác A1B1C1 đồng dạng với tam giác ABC (c.c.c)
=> \(\widehat{B_1A_1C_1}=\widehat{BAC};\widehat{A_1B_1C}=\widehat{ABC}\)
mà \(\widehat{JA_1B_1}=\frac{\widehat{B_1A_1C_1}}{2},\widehat{IAB}=\frac{\widehat{BAC}}{2}\)
Do đó: \(\Delta JA_1B_1\) đồng dạng với tam giác IAB (g.g)
=> \(\frac{JA_1}{IA}=\frac{A_1B_1}{AB}=\frac{1}{2}\)
Mà \(\widehat{BAA_1}=\widehat{AA_1B_1}\left(slt;AB//A_1B_1\right)\). Nên \(\widehat{IAA_1}=\widehat{IA_1A}\Rightarrow AI//A_1J\)
Xét tam giác G'AI có: A1J // AI => \(\frac{G'A_1}{G'A}=\frac{G'J}{G'I}=\frac{JA_1}{IA}=\frac{1}{2}\) (hệ quả của định lý Talet)
=> \(AG'=\frac{2}{3}AA_1\)
Tam giác ABC có AA1 là đường trung tuyến, G' thuộc đoạn thẳng AA1 và AG' \(=\frac{2}{3}AA_1\)
Do đó G' là trọng tâm tam giác ABC, G' thuộc đoạn thẳng AA1 và AG'=\(\frac{2}{3}AA_1\)
a) Gọi D, E, F lần lượt là chân các đường phân giác của tam giác ABC lần lượt hạ từ A, B, C.
Gọi T là trung điểm của BC. Do AD là đường phân giác của tam giác ABC nên \(\frac{BD}{AB}=\frac{CD}{AC}\Rightarrow\frac{BD}{5}=\frac{CD}{7}=\frac{BD+CD}{5+7}=\frac{6}{12}=\frac{1}{2}\)\(\Rightarrow\hept{\begin{cases}BD=2,5\\CD=3,5\end{cases}}\)
\(\Delta ABD\) có BI là đường phân giác nên \(\frac{AI}{ID}=\frac{BA}{BD}=\frac{5}{2,5}=2\)
Do G là trọng tâm của tam giác ABC nên \(\frac{AG}{GT}=2\)
Từ các kết quả trên ta được \(\frac{AI}{ID}=\frac{AG}{GT}=2\)suy ra IG // DT hay IG // BC (Theo định lý Thales đảo)
b) Ta có \(\Delta BMI=\Delta BDI\)vì \(BD=BM=2,5;\widehat{DBI}=\widehat{MBI}\); BI là cạnh chung
Suy ra \(\widehat{BMI}=\widehat{BDI}\)
Chứng minh tương tự \(\Delta CNI=\Delta CDI\Rightarrow\widehat{ CNI}=\widehat{CDI}\)
Mà \(\widehat{BDI}+\widehat{CDI}=180^0\)nên \(\widehat{BMI}+\widehat{CNI}=180^0\)suy ra\(\widehat{AMI}+\widehat{ANI}=180^0\)
Vậy tứ giác AMIN nội tiếp hay bốn điểm A, M, I, N cùng nằm trên 1 đường tròn (đpcm)