K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 4 2018

xét tam giác CFB ta có :

CA vuông BF ( gt ) => CA là đường cao của tam giác CFB

DE vuông BC ( gt ) => FE vuông CB => FE là đường cao tam giác CFB 

mà đường cao CA cắt đường cao FE tại D => D là trực tâm của tam giác CFB

=> BD là đường cao thứ 3 của tam giác CFB => BD vuông CF

Câu 1: Cho tam giác ABC có góc A= 90 độ. kẻ AH vuông góc với BC (H e BC) Trên đường vuông góc với BC tại điểm D không cùng nửa mặt phẳng bờ BC với điểm A sao cho AH=BD chứng minh a) tam giác AHB=DBH b) hai đường thẳng AB và DH có song song không? vì sao?Câu 2: Cho góc nhọn xOy. Trên tia Ox lấy điểm A, lấy điểm B trên tia Oy sao cho OA=OB. Trên tia Ax lấy điểm C, trên tia By lấy điểm D sao cho AC=BD chứng minh...
Đọc tiếp

Câu 1: Cho tam giác ABC có góc A= 90 độ. kẻ AH vuông góc với BC (H e BC) Trên đường vuông góc với BC tại điểm D không cùng nửa mặt phẳng bờ BC với điểm A sao cho AH=BD chứng minh a) tam giác AHB=DBH b) hai đường thẳng AB và DH có song song không? vì sao?

Câu 2: Cho góc nhọn xOy. Trên tia Ox lấy điểm A, lấy điểm B trên tia Oy sao cho OA=OB. Trên tia Ax lấy điểm C, trên tia By lấy điểm D sao cho AC=BD chứng minh AD=BC. gọi E là giao điểm AD và BC, chứng minh tam giác EAD=EBD.

Câu 3: Cho tam giác ABC vuông tại A, kẻ phân giác BD (D e AC), kẻ DE vuông góc với BC tại E. Chứng minh BA=BE

Câu 4: Cho tam giác ABC vuông tại A, kẻ phân giác BD (D e AC), kẻ DE vuông góc với BC tại E. gọi F là giao điểm của tia BA và ED. chứng minh tam giác BDA=BDE và DC=DF

Giúp mình giải lun nhé. Giúp mình đi mình Tick cho!!!

0
3 tháng 12 2021

1) Xét tam giác ABE và tam giác DBE có:

+ BM chung.

+ AB = DB (gt).

+ ^ABE = ^DBE (do BE là phân giác ^ABD).

=> Tam giác ABE = Tam giác DBE (c - g - c).

2) Xét tam giác ABD có: BA = BD (Tam giác ABE = Tam giác DBE).

=> Tam giác ABD cân tại B.

Mà BE là phân giác ^ABD (gt).

=> BE là đường cao (Tính chất các đường trong tam giác cân).

Lại có: BE cắt AD tại M (gt).

=> BE vuông góc AD tại M (đpcm).

3) Xét tam giác FBC có: 

+ BN là trung tuyến (do N là trung điểm của CF).

+ BN là phân giác của ^FBC (do BE là phân giác ^ABD).

=> Tam giác FBC cân tại B.

=> BN là đường cao (Tính chất các đường trong tam giác cân).

=> BN vuông góc FC. (1)

Vì tam giác FBC cân tại B (cmt). => ^BCF = (180- ^DBA) : 2.

Vì tam giác ABD cân tại B (cmt). => ^BDA = (180- ^DBA) : 2.

=> ^BCF = ^BDA.

Mà 2 góc này ở vị trí đồng vị.

=> AD // FC (dhnb).

Mà BE vuông góc với AD tại M (cmt).

=> BE vuông góc FC. (2)

Từ (1) và (2) => 3 điểm B, E, N thẳng hàng (đpcm).