K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
SU
31 tháng 7 2015
ai bit thi tra loi giup mik di mot chut nua la mik phai nop bai r
L
18 tháng 8 2016
a) Ta có :
Góc B1 + Góc B2 = 180o
\(\Rightarrow\frac{1}{2}\)Góc B1 + \(\frac{1}{2}\)Góc B2 = 90o
\(\Rightarrow\)Góc ABx + Góc ABI = 90o
\(\Rightarrow\)Góc IBx = 90o
Mà góc IBx + góc IBK = 180o ( kề bù )
\(\Rightarrow\)Góc IBK = 90o ; nên \(\Delta IBK\) vuông tại B.
Chứng minh tương tự, ta cũng có góc ICK vuông, nên \(\Delta ICK\)vuông tại C.
b) Ta có :
Góc B + Góc C = \(180^o-\)Góc A
\(\Rightarrow2.\)Góc C + Góc C = 180o - \(\alpha\)
Góc C = \(\frac{180^o-\alpha}{3}=60^o-\frac{\alpha}{3}\)
Góc B = \(\left(60^o-\frac{\alpha}{3}\right).2=120^o-\frac{2\alpha}{3}\)
Gọi M là gđ của tia pg ở C với AB, N là gđ của tia pg ở B với AC.
*Tính góc BIC:
Xét tam giác BIC: BIC = 180 - ( IBC + ICB )
Xét tam giác ABC: A + ABC + ACB = 180 <=> A + 2IBC + 2ICB = 180 <=> A + 2(IBC + ICB) = 180
<=> IBC + ICB = (180 - α ) : 2
Từ đây em tính đc góc BIC
*Tính góc BKC:
Em nhìn vào tứ giác BICK. Trong 1 tứ giác thì tổng các góc bằng 360 độ.
Gọi 2 góc phân giác ngoài ở B là B1, B2; tương tự có C1, C2.
Ta có: ABC + B1 + B2 = 180 <=> 2IBC + 2B1 (CBK) = 180 <=> IBC + B1 = 90 <=> IBC = 90
Tương tự: ACB + C1 + C2 = 180 <=> 2ICB + 2C1 (BCK) = 180 <=> ICB + C1 = 90 <=> ICK = 90
Xét tứ giác BICK: BIC + IBK + BKC + ICK = 360
Có 3 góc rồi em sẽ tính đc BKC
*Tính góc BEC:
Xét tam giác BEK: BEC + EBK + BKC = 180
Đã có EBK và BKC => BEC
cách 2
Góc ABC + góc ACB=180 độ-α => góc IBC+góc ICB=(ABC + góc ACB)/2=(180 độ-α)/2
=> góc BIC=180 độ - (góc IBC+góc ICB)=180 độ - (180 độ-α)/2 = 90 độ+α/2
_Vì mỗi góc, tia phân giác trong luôn vuông góc với tia phân giác ngoài nên
Xét tứ giác BICK có tổng số đo các góc là 360 độ, góc B và góc C vuông
=>góc BKC=360 - (góc IBK+góc ICK) - góc BIC=360-90.2- (90 độ+α/2)=90 độ - α/2
_Góc BEC= 180 độ - góc IBK - góc BKC= 180 - 90 - (90 độ - α/2) = α/2
Gọi M là gđ của tia pg ở C với AB, N là gđ của tia pg ở B với AC.
*Tính góc BIC:
Xét tam giác BIC: BIC = 180 - ( IBC + ICB )
Xét tam giác ABC: A + ABC + ACB = 180 <=> A + 2IBC + 2ICB = 180 <=> A + 2(IBC + ICB) = 180
<=> IBC + ICB = (180 - α ) : 2
Từ đây em tính đc góc BIC
*Tính góc BKC:
Em nhìn vào tứ giác BICK. Trong 1 tứ giác thì tổng các góc bằng 360 độ.
Gọi 2 góc phân giác ngoài ở B là B1, B2; tương tự có C1, C2.
Ta có: ABC + B1 + B2 = 180 <=> 2IBC + 2B1 (CBK) = 180 <=> IBC + B1 = 90 <=> IBC = 90
Tương tự: ACB + C1 + C2 = 180 <=> 2ICB + 2C1 (BCK) = 180 <=> ICB + C1 = 90 <=> ICK = 90
Xét tứ giác BICK: BIC + IBK + BKC + ICK = 360
Có 3 góc rồi em sẽ tính đc BKC
*Tính góc BEC:
Xét tam giác BEK: BEC + EBK + BKC = 180
Đã có EBK và BKC => BEC
cách 2
Góc ABC + góc ACB=180 độ-α => góc IBC+góc ICB=(ABC + góc ACB)/2=(180 độ-α)/2
=> góc BIC=180 độ - (góc IBC+góc ICB)=180 độ - (180 độ-α)/2 = 90 độ+α/2
_Vì mỗi góc, tia phân giác trong luôn vuông góc với tia phân giác ngoài nên
Xét tứ giác BICK có tổng số đo các góc là 360 độ, góc B và góc C vuông
=>góc BKC=360 - (góc IBK+góc ICK) - góc BIC=360-90.2- (90 độ+α/2)=90 độ - α/2
_Góc BEC= 180 độ - góc IBK - góc BKC= 180 - 90 - (90 độ - α/2) = α/2