K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
CH
Cô Hoàng Huyền
Admin
VIP
24 tháng 11 2017
https://olm.vn/hoi-dap/question/1088709.html
Em có thể xem tại đây.
6 tháng 6 2019
Ta có tứ giác AEDB nội tiếp (AB), tứ giác BFEC nội tiếp (BC) nên ^CID = ^CED = ^ABD = ^AEF = ^MEN
=> Tứ giác MINE nội tiếp => ^EMN = ^EIN = ^ECT => Tứ giác EMCT nội tiếp
Áp dụng hệ thức lượng trong đường tròn: NM.NT = NE.NC = NF.NK => Tứ giác MKTF nội tiếp
=> ^FKT = ^FMT = ^HMN. Cũng từ tứ giác MINE nội tiếp ta suy ra ^EMN = ^ECT = ^AFE
=> MN // AF. Mà AF vuông góc CH nên MN vuông góc CH
Kết hợp với ^HFC chắn nửa đường tròn (O) suy ra ^HMN = ^HCF (Cùng phụ ^MHC)
Do đó ^FKT = ^HCF = ^FKH. Vì H,T nằm cùng phía so với FK nên KT trùng KH
Vậy thì H,K,T thẳng hàng (đpcm).
a) Ta thấy ngay \(\Delta AEB\sim\Delta AFC\left(g-g\right)\Rightarrow\frac{AE}{AF}=\frac{AB}{AC}\Rightarrow\frac{AE}{AB}=\frac{AF}{AC}\)
Vậy thì \(\Delta AEF\sim\Delta ABC\left(c-g-c\right)\Rightarrow\frac{EF}{BC}=\frac{AE}{AB}\)
Xét tam giác vuông ABE có \(cos\widehat{BAE}=\frac{AE}{AB}\Rightarrow\frac{AE}{AB}=cos60^o=\frac{1}{2}\)
Suy ra \(\frac{EF}{BC}=\frac{1}{2}\Rightarrow EF=\frac{a}{2}\)
b) Ta thấy ngay tứ giác BKHM nội tiếp nên \(\widehat{KHB}=\widehat{KMB}\) (Hai góc nội tiếp cùng chắn cung BK)
Ta cũng có tứ giác CIHM nội tiếp nên \(\widehat{CMI}=\widehat{CHI}\)(Hai góc nội tiếp cùng chắn cung CI)
Ta thấy ngay E thuộc đường tròn đường kính BC nên \(\widehat{EBM}=\widehat{ICM}\)
(Góc ngoài tại đỉnh đối diện)
Suy ra \(\widehat{BMK}=\widehat{CMI}\) nên \(\widehat{KHB}=\widehat{CHI}\)
Vậy I, H, K thẳng hàng.
Ta thấy ngay \(\Delta EIK\sim\Delta HMC\sim\Delta HBM\Rightarrow\frac{EI}{MI}=\frac{EI}{EK}=\frac{MH}{CH}\)
và \(\frac{MH}{BH}=\frac{EK}{EI}=\frac{EK}{MK}\)
Mà \(\Delta CMI\sim\Delta BMK\Rightarrow\frac{CI}{MI}=\frac{BK}{MK}\)
Vậy thì \(S=\frac{BC}{MH}+\frac{CE}{MI}+\frac{BE}{MK}=\frac{BH+HC}{MH}+\frac{EI-CI}{MI}+\frac{BK+KE}{MK}\)
\(=\frac{BH}{MH}+\frac{CH}{MH}+\frac{EI}{MI}-\frac{CI}{MI}+\frac{BK}{MK}+\frac{EK}{MK}\)
\(=\left(\frac{BH}{MH}+\frac{CH}{MH}\right)+\left(\frac{MH}{CH}-\frac{BK}{MK}\right)+\left(\frac{BK}{MK}+\frac{MH}{BH}\right)\)
\(=\left(\frac{BH}{MH}+\frac{MH}{BH}\right)+\left(\frac{CH}{MH}+\frac{MH}{CH}\right)\ge2+2=4\)
\(\Rightarrow minS=4\Leftrightarrow MH=BH=CH\)
hay M ở chính giữa cung BC.
Chi. Quan li lam dung roi