Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: ta có:BD\(\perp\)AB
CH\(\perp\)AB
Do đó: BD//CH
Ta có: CD\(\perp\)CA
BH\(\perp\)CA
Do đó: CD//BH
Xét tứ giác BHCD có
BH//CD
BD//CH
Do đó: BHCD là hình bình hành
b: ta có: BHCD là hình bình hành
=>BC cắt HD tại trung điểm của mỗi đường
mà M là trung điểm của BC
nên M là trung điểm của HD
=>H,M,D thẳng hàng
c: Ta có: ΔABD vuông tại B
mà BI là đường trung tuyến
nên \(BI=\dfrac{AD}{2}\left(1\right)\)
Ta có: ΔACD vuông tại C
mà CI là đường trung tuyến
nên \(CI=\dfrac{AD}{2}\left(2\right)\)
Từ (1) và (2) suy ra BI=CI
d: Để BDCH là hình thoi thì HB=HC
=>ΔHBC cân tại H
=>\(\widehat{HBC}=\widehat{HCB}\)
Ta có: \(\widehat{HBC}+\widehat{ACB}=90^0\)(BH\(\perp\)AC)
\(\widehat{HCB}+\widehat{ABC}=90^0\)(CH\(\perp\)AB)
mà \(\widehat{HBC}=\widehat{HCB}\)
nên \(\widehat{ABC}=\widehat{ACB}\)
a: Xét tứ giác BDCH có
BD//CH
BH//CD
Do đó: BDCH là hình bình hành
a: Ta có:BD\(\perp\)AB
CH\(\perp\)AB
Do đó: BD//CH
Ta có: CD\(\perp\)CA
BH\(\perp\)CA
Do đó: CD//BH
Xét tứ giác BHCD có
BH//CD
BD//CH
Do đó: BHCD là hình bình hành
b: ta có: BHCD là hình bình hành
=>BC cắt HD tại trung điểm của mỗi đường
mà M là trung điểm của BC
nên M là trung điểm của HD
=>H,M,D thẳng hàng
d: Để hình bình hành BHCD trở thành hình thoi thì HB=HC
=>ΔHBC cân tại H
=>\(\widehat{HBC}=\widehat{HCB}\)
Ta có: \(\widehat{HBC}+\widehat{ACB}=90^0\)(BH\(\perp\)AC)
\(\widehat{HCB}+\widehat{ABC}=90^0\)(CH\(\perp\)AB)
mà \(\widehat{HBC}=\widehat{HCB}\)
nên \(\widehat{ABC}=\widehat{ACB}\)
a: Xét tứ giác BDCH có
BD//CH
BH//CD
Do đó: BDCH là hình bình hành
\(a,\) Vì H là trực tâm nên BH,CH là đường cao tam giác ABC
\(\Rightarrow BH\perp AC;CH\perp AB\\ \Rightarrow BH\text{//}CD;CH\text{//}BD\\ \Rightarrow BDCH\text{ là hbh}\)
\(b,BDCH\text{ là hbh}\Rightarrow\widehat{BHC}=\widehat{BDC}\\ \text{Xét tứ giác }ABCD:\widehat{BAC}+\widehat{BAD}+\widehat{DAC}+\widehat{BDC}=360^0\\ \Rightarrow\widehat{BAC}+\widehat{BDC}=360^0-90^0-90^0=180^0\\ \Rightarrow\widehat{BAC}+\widehat{BHC}=180^0\)
\(c,\) Gọi O là trung điểm AD \(\Rightarrow OA=OD=\dfrac{1}{2}AD\)
\(\Delta ABD\text{ và }\Delta ACD\text{ vuông tại }B,C\text{ có }BO,CO\text{ là trung tuyến ứng ch }AD\)
\(\Rightarrow BO=CO=\dfrac{1}{2}AD\)
Vậy \(AO=BO=CO=DO\) hay A,B,C,D cách đều O
Xét tứ giác BDCH có
BD//CH
BH//CD
Do đó: BDCH là hình bình hành
1.
Câu 1:
a) $CD\perp AC, BH\perp AC$ nên $CD\parallel BH$
Tương tự: $BD\parallel CH$
Tứ giác $BHCD$ có hai cặp cạnh đối song song nhau (BH-CD và BD-CH) nên là hình bình hành
b)
Áp dụng bổ đề sau: Trong tam giác vuông, đường trung tuyến ứng với cạnh huyền thì bằng 1 nửa cạnh huyền.
Ta có:
$BO$ là trung tuyến của tgv $ABD$ nên $BO=\frac{AD}{2}$
$CO$ là trung tuyến của tgv $ACD$ nên $CO=\frac{AD}{2}$
$\Rightarrow BO=CO(1)$
$OK\parallel AH, AH\perp BC$ nên $OK\perp BC(2)$
Từ $(1);(2)$ ta dễ thấy $\triangle OBK=\triangle OCK$ (ch-cgv)
$\Rightarrow BK=CK$ hay $K$ là trung điểm $BC$
Mặt khác:
$HBDC$ là hình bình hành nên $HD$ cắt $BC$ tại trung điểm mỗi đường. Mà $K$ là trung điểm $BC$ nên $K$ là trung điểm $HD$
Xét tam giác $AHD$ có $O$ là t. điểm $AD$, $K$ là t. điểm $HD$ nên $OK$ là đường trung bình của tam giác $AHD$ ứng với cạnh $AH$.
$\Rightarrow OK=\frac{AH}{2}=3$ (cm)
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)