Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn tự vẽ hình nhé
a, Vì tam giác ABC đều (gt) nên AB=AC=BC
Ta lại có: AM=BN=CP (gt)
Suy ra BM=CN=AP
Ta sẽ chứng minh được tam giác AMP=tam giác BNM; tam giác AMP= tam giác CPN(c.g.c)
=> MP=MN ; MP=PN(cặp cạnh tương ứng)
=> MN=NP=PM
=> tam giác MNP là tam giác đều(đpcm)
b, Vì O là giao điểm các đường trung trực của tam giác đều ABC nên OA=OB=OC(Vì giao điểm O của 3 đường trung trực của tam giác ABC cách đều 3 đỉnh của tam giác đó) và các tia AO,BO,CO, lần lượt là các tia phân giác của các góc A, B,C. Ta sẽ chứng minh được tam giác MAO= tam giác NPO; tam giác MAO=tam giác PCO(c.g.c)
=> OM=ON; OM=OP (cặp cạnh tương ứng)
=> OM=ON=OP
=> O là giao điểm các đường trung trực của tam giác MNP (đpcm)
Chúc bạn học tốt nha!!!
lớp 5A đã hoàn thành số cây là :
180 : 100 x 45 = 81 ( cây )
Lớp 5A còn phải trồng số cây nữa là :
180 - 81 = 99 ( cây )
đáp số : 99 cây
đáng lẽ đề bài phải là AHcắt CB tại ii ms đúng bạn
a, AI vg vs BC vì tính chất 3 đường cao
a) Do \(\widehat{BEC};\widehat{BDC}\) là các góc nội tiếp chắn nửa đường tròn nên \(\widehat{BEC}=\widehat{BDC}=90^o\Rightarrow\widehat{AEH}=\widehat{ADH}=90^o\)
Hai tam giác vuông AEH và ADH có chung cạnh huyền AH nên A, E, D, H cùng thuộc đường tròn đường kính AH.
Vậy ADHE là tứ giác nội tiếp.
Xét tam giác ABC có BD, CE là các đường cao nên H là trực tam. Vậy thì \(AI\perp BC\)
Hai tam giác vuông ABD và AIB có chung cạnh huyền AB nên A, D, I, B cùng thuộc đường tròn đường kính AB.
Vậy ADIB là tứ giác nội tiếp.
b) Ta có \(\Delta AHD\sim\Delta ACI\left(g-g\right)\Rightarrow\frac{AH}{AC}=\frac{AD}{AI}\Rightarrow AH.AI=AD.AC\)
\(\Delta AHE\sim\Delta ABI\left(g-g\right)\Rightarrow\frac{AH}{AB}=\frac{AE}{AI}\Rightarrow AH.AI=AB.AE\)
Vậy nên \(AB.AE=AH.AI=AD.AC\)
c) Tứ giác AION nội tiếp nên \(\widehat{AIN}=\widehat{AON}=\widehat{ANM}\)
Ta cùng có \(\Delta ADN\sim\Delta ANC\Rightarrow\frac{AD}{AN}=\frac{AN}{AC}\Rightarrow AN^2=AD.AC\)
Mà AD.AD = AH.AI nên AH.AI = AN2
\(\Rightarrow\Delta AHN\sim\Delta ANI\left(c-g-c\right)\)
\(\Rightarrow\widehat{ANH}=\widehat{AIN}=\widehat{ANM}\)
Vậy nên M, K , N thẳng hàng.