Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔBAD vuông tại D và ΔBCE vuông tại E có
BA=BC
\(\widehat{ABD}\) chung
Do đó: ΔBAD=ΔBCE
b: Xét ΔBEF vuông tại E và ΔBDF vuông tại D có
BF chung
BE=BD
Do đó:ΔBEF=ΔBDF
Suy ra: \(\widehat{EBF}=\widehat{DBF}\)
hay BF là tia phân giác của góc ABC
a)xét ΔBAD và ΔBCE có
\(\widehat{ADB}=\widehat{CEB}=90^o\)
\(\widehat{ABC}\) là góc chung
AB=BC(ΔABC cân tại B)
⇒ ΔBAD=ΔBCE(c.huyền.g.nhọn)
b)xét ΔEBF và ΔDBF có:
BF là cạnh chung
BD=BE(ΔBAD=ΔBCE)
\(\widehat{BDF}=\widehat{BEF}=90^o\)
⇒ΔEBF=ΔDBF(c.huyền.c.g.vuông)
⇒\(\widehat{EBF}=\widehat{DBF}\)(2 góc tương ứng)
hay BF là phân giác của \(\widehat{ABC}\)(đ.p.cm)
c)xét ΔABF và ΔCBF có:
AC=BC(ΔABC cân tại B)
BF là cạnh chung
\(\widehat{EBF}=\widehat{DBF}\)(ΔEBF=ΔDBF)
⇒ΔABF=ΔCBF(c-g-c)
⇒FA=FC(2 cạnh tương ứng)
xét ΔAFC có:
FA+FC>AC(bất đẳng thức tam giác)
mà FA=FC⇒FA>\(\dfrac{AC}{2}\)(đ.p.cm)
a: Xét ΔABD vuông tại D và ΔACE vuông tại E có
AB=AC
\(\widehat{BAD}\) chung
Do đó: ΔABD=ΔACE
Suy ra: BD=CE
b: Xét ΔAED có AE=AD
nên ΔAED cân tại A
c: Xét ΔEBI vuông tại E và ΔDCI vuông tại D có
EB=DC
\(\widehat{EBI}=\widehat{DCI}\)
Do đó; ΔEBI=ΔDCI
Suy ra: IB=IC
Xét ΔAIB và ΔAIC có
AI chung
IB=IC
AB=AC
Do đó: ΔAIB=ΔAIC
Suy ra: \(\widehat{BAI}=\widehat{CAI}\)
hay AI là tia phân giác của góc BAC
a, Xét Δ ABC, có :
\(AB^2+AC^2=BC^2\) (định lí Py - ta - go)
=> \(3^2+4^2=BC^2\)
=> \(25=BC^2\)
=> BC = 5 (cm)
Xét Δ ABC vuông tại A, theo hệ thức lượng có :
\(\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\)
=> \(\dfrac{1}{AH^2}=\dfrac{1}{3^2}+\dfrac{1}{4^2}\)
=> AH = 2,4 cm
b, Xét Δ ABD, có :
HD = HB (gt)
AH là đường cao
=> Δ ABD cân
a: Xét ΔABD vuông tại D và ΔACE vuông tại E có
AB=AC
góc BAD chung
=>ΔABD=ΔACE
b: Xét ΔADI vuông tại D và ΔAEI vuông tại E có
AI chung
AD=AE
=>ΔADI=ΔAEI
=>góc DAI=góc EAI
=>AI là phân giác của góc DAE
b)
theo câu a, ta có tam giác AHD=ACD(CH-GN)
=> AH=AK(1)
tam giác DKC vuông tại K=> DC là cạnh lớn nhất trong tam giác DCK
=> DC>KC(2)
ta có: BA=BD(gt)(3)
từ (1)(2)(3)=> AB+AC<BC+AH
bạn, mk thi hsg gặp câu này làm đc điểm tuyệt đối đó
a) Xét 2 tg vuông AEC và ADB có: AB = AC (vì tam giác ABC cân tại A)
góc A chung
Do đó tg AEC = tg ADB (ch - gn)
=> BD = CE (đpcm)
b) xét 2 tg vuông CEB và BDC có: góc CBE = góc BCD (tam giác ABC cân tại A)
CE = BD (Cmt)
do đó tg CEB = tg BDC (cgv - gnk)
=> góc ECB = góc DBC
=> tam giác BIC cân tại I (đpcm)
c) xét 2 tg AIC và AIB có: AC = AB (tam giác ABC cân tại A)
AI chung
BI = IC (tam giác BIC cân (Cmt))
DO đó tg AIC = tg AIB (c.c.c)
=> góc IAC = góc IAB => AI là tia pg của góc BAC (Đpcm)
d) Ta có: tg CEB = tg BDC (cmt) => CD = BE mà AB = AC => AE = AD => AED cân tại A
Mà AI là tia pg của góc EAD nên AI vuông với DE(1)
Ta lại có: Tam giác ABC cân tại A mà AI là tia pg của góc BAC nên AI vuông BC (2)
Từ (1) và (2) suy ra DE // BC (cùng vuông vs BC) (đpcm)
e) ko bt
F) cm vuông như câu d nha
xét tam giác ADB và tam giác ADC có
AB=AC (gt)
BD=CD ( D là trung điễm BC)
BD cạnh chung
nên tam giác ADB= tam giác ADC (c.c.c)
a: Xét ΔBAD vuông tại D và ΔBCE vuông tại E có
BA=BC
\(\widehat{ABD}\) chung
Do đó: ΔBAD=ΔBCE
b: Xét ΔBEF vuông tại E và ΔBDF vuông tại D có
BF chung
BE=BD
Do đó:ΔBEF=ΔBDF
Suy ra: \(\widehat{EBF}=\widehat{DBF}\)
hay BF là tia phân giác của góc ABC