Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
BÀI NÀY KO KHÓ LẮM
BẠN CHỈ CẦN ÁP DỤNG NHỮNG T/C CỦA TAM GIÁC CÂN VÀ XÉT CÁC TAM GIAC BẰNG NHAU
a) Vì tam giác ABC cân tại A
\( \Rightarrow \widehat B = \widehat C \Rightarrow \dfrac{1}{2}\widehat B = \dfrac{1}{2}\widehat C \Rightarrow \widehat {ABF} = \widehat {ACE}\)
b) Xét \(\Delta ECA\) và \(\Delta FBA\)có:
\(\widehat{A}\) chung
AB = AC
\(\widehat {ABF} = \widehat {ACE}\)
\( \Rightarrow \)\(\Delta ECA\)= \(\Delta FBA\)( g – c – g )
\( \Rightarrow AE = AF và EC = BF\) (2 cạnh tương ứng)
\( \Rightarrow \Delta AEF\) cân tại A
c) Xét tam giác IBC có :
\(\widehat B = \widehat C \Rightarrow \dfrac{1}{2}\widehat B = \dfrac{1}{2}\widehat C \Rightarrow \widehat {ICB} = \widehat {IBC}\)
Do đó, tam giác IBC cân tại I ( 2 góc ở đáy bằng nhau )
\( \Rightarrow IB = IC\)( cạnh tương ứng )
Vì EC = BF ( câu b) và IB = IC
\( \Rightarrow \) EC – IC = BF – BI
\( \Rightarrow \) EI = FI
\( \Rightarrow \Delta IEF\) cân tại I
a: góc ABF=1/2*góc ABC
góc ACE=1/2*góc ACB
mà góc ACB=góc ABC
nên góc ABF=góc ACE
b: Xét ΔABF và ΔACE có
góc ABF=góc ACE
AB=AC
góc BAF chung
=>ΔABF=ΔACE
=>AF=AE
=>ΔAFE cân tại A
c: Xét ΔIBC có góc IBC=góc ICB
nên ΔIBC cân tại I
=>IB=IC
IB+IF=BF
IC+IE=CE
mà BF=CE và IB=IC
nên IF=IE
=>ΔIFE cân tại I
a: góc ABF=1/2*góc ABC
góc ACE=1/2*góc ACB
mà góc ACB=góc ABC
nên góc ABF=góc ACE
b: Xét ΔABF và ΔACE có
góc ABF=góc ACE
AB=AC
góc BAF chung
=>ΔABF=ΔACE
=>AF=AE
=>ΔAFE cân tại A
c: Xét ΔIBC có góc IBC=góc ICB
nên ΔIBC cân tại I
=>IB=IC
IB+IF=BF
IC+IE=CE
mà BF=CE và IB=IC
nên IF=IE
=>ΔIFE cân tại I
a: Xét ΔABD và ΔACE có
\(\widehat{A}\) chung
AB=AC
\(\widehat{ABD}=\widehat{ACE}\)
Do đó: ΔABD=ΔACE
Suy ra: \(\widehat{EBD}=\widehat{ECD}\)
b: Xét ΔADE có AD=AE
nên ΔADE cân tại A
c: Xét ΔABC có
BD là đường phân giác
nên AD/DC=AB/BC=AC/BC(1)
Xét ΔABC có
CE là đường phân giác
nên AE/EB=AC/BC(2)
Từ (1) và (2) suy ra AE/EB=AD/DC
hay DE//BC
d: Xét ΔOBC có \(\widehat{OBC}=\widehat{OCB}\)
nên ΔOBC cân tại O
a: Xét ΔABC có BD là đường phân giác
nên AB/BC=AD/DC
=>AD/DC=AC/BC(1)
Xét ΔABC có CE là đường phân giác
nên AE/EB=AC/BC(2)
Từ (1) và (2) suy ra AD/DC=AE/EB
=>ED//BC
=>\(\widehat{EDB}=\widehat{DBC}\)
mà \(\widehat{DBC}=\widehat{EBD}\)
nên \(\widehat{EDB}=\widehat{EBD}\)
b: Xét ΔABC có DE//BC
nên AE/AB=AD/AC
mà AB=AC
nên AE=AD
hay ΔADE cân tại A
b: Xét ΔABD và ΔACE có
\(\widehat{BAD}\) chung
AB=AC
\(\widehat{ABD}=\widehat{ACE}\)
Do đó: ΔABD=ΔACE
Suy ra: AD=AE
hay ΔADE cân tại A
c: Xét ΔABC có
AE/AB=AD/AC
Do đó: DE//BC
d: Xét ΔOBC có \(\widehat{OBC}=\widehat{OCB}\)
nên ΔOBC cân tại O
đúng hông