Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABN và ΔACM có
AB=AC
\(\widehat{BAN}\) chung
AN=AM
Do đó: ΔABN=ΔACM
Xét ΔIBC có \(\widehat{IBC}=\widehat{ICB}\)
nên ΔIBC cân tại I
c: Ta có: AB=AC
IB=IC
Do đó: AI là đường trung trực của BC(1)
d: Xét ΔABK vuông tại B và ΔACK vuông tại C có
AK chung
AB=AC
Do đó: ΔABK=ΔACK
Suy ra: KB=KC
hay K nằm trên đường trung trực của BC(2)
Từ (1) và (2) suy ra A,I,K thẳng hàng
a: Xét ΔMBC và ΔNCB có
MB=NC
\(\widehat{MBC}=\widehat{NCB}\)
BC chung
Do đo: ΔMBC=ΔNCB
Suy ra: CM=BN và \(\widehat{ICB}=\widehat{IBC}\)
hay ΔIBC cân tại I
b: Gọi IE,IK lần lượt là khoảng cách từ I đến AB và AC
=>IE vuông góc với AB, IK vuông góc với AC
Xét ΔAEI vuông tại E và ΔAKI vuông tại K có
AI chung
\(\widehat{EAI}=\widehat{KAI}\)
Do đó: ΔAEI=ΔAKI
Suy ra: IE=IK
c: Ta có: AB=AC
IB=IC
Do đó: AI là đường trung trực của BC(1)
d: Xét ΔABK vuông tại B và ΔACK vuông tại C có
AK chung
AB=AC
Do đó: ΔABK=ΔACK
Suy ra: BK=CK
=>K nằm trên đường trung trực của BC(2)
Từ (1) và (2) suy ra A,I,K thẳng hàng
a/ Ta có AB=AC(gt)
Mà D và E là trung điểm của AB và AC
=> AD=BD=AE=EC
Xét tam giác ABE và tam giác ACD có:
AB=AC(gt)
Góc A chung
AE=AD(cmt)
=> tam giác ABE= tam giác ACD(c-g-c)
b/ Ta có tam giác ABE= tam giác ACD(c-g-c)
=> góc ABE=góc ACD
=> góc KBC=góc KCB vì tam giác ABC cân tại A
Vậy tam giác KBC cân tại K
4,
a/ tgiác ACD và tgiác AME là hai tgiác vuông tại A.
AD = AE (gt)
góc(ADC) = góc (AEM) (góc có cạnh tương ứng vuông góc)
=> tgiácACD = tgiácAME (g.c.g)
b/ ta có: AG//EH (cùng vuông góc với CD)
=> AG // IH
mà gt => AI // GH
vậy AGHI là hình bình hành
=>AG = IH.
mặt khác theo cm trên ta có: tgiác ACD = tgiác AME
=> AM = AC = AB
=> A là trung điểm BM, mà AI // BC
=> AI là đường trung bình của tgiác MBH
=> I là trung điểm của MH.
vậy: IM = IH = AG
có: AM = AB
góc BAG = góc AMI (so le trong)
=> tgiác AGB = tgiác MIA ( c.g.c)
c/ có AG//MH, A là trung điểm BM
=> AG là đường trung bình của tgiácBMH
=> G là trung điểm BH
hay BG = GH.