Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: ΔABC cân tại A
mà AH là đường trung tuyến
nên AH là phân giác của góc BAC
c: ΔABC cân tại A
mà AH là trung tuyến
nên AH là trung trực của BC
=>I nằm trên trung trực của BC
=>IB=IC
d: Xet ΔABN có góc ABN=góc ANB=góc MBC
nên ΔABN can tại A
=>AB=AN
e: Xét ΔABC co
BM,AM là phân giác
nên M là tâm đừog tròn nội tiếp
=>CM là phân giác của góc ACB
Xét ΔHCM vuông tại H và ΔKCM vuông tại K có
CM chung
góc HCM=góc KCM
=>ΔHCM=ΔKCM
=>MH=MK
a: Xét ΔAMB vuông tại M và ΔANC vuông tại N có
AB=AC
góc BAM chung
=>ΔAMB=ΔAMC
=>góc ABM=góc ACN
b: góc ABM+góc HBC=góc ABC
góc ACN+góc HCB=góc ACB
mà góc ABM=góc ACN và góc ABC=góc ACB
nên góc HBC=góc HCB
=>HB=HC
c: Xét ΔABC có AN/AB=AM/AC
nên NM//BC
NM//BC
=>góc HMN=góc HBC; góc HNM=góc HCB
mà góc HBC=góc HCB
nên góc HMN=góc HNM
góc EMN=góc MNC
góc MNC=góc HMB
=>góc EMN=góc HMB
=>MN là phân giác của góc EMB
a: Xét ΔAMB vuông tại M và ΔANC vuông tại N có AB=AC
góc BAM chung
=>ΔAMB=ΔAMC
=>góc ABM=góc ACN
b: góc ABM+góc HBC=góc ABC
góc ACN+góc HCB=góc ACB
mà góc ABM=góc ACN và góc ABC=góc ACB
nên góc HBC=góc HCB
=>HB=HC
c: Xét ΔABC có AN/AB=AM/AC nên NM//BC NM//BC
=>góc HMN=góc HBC; góc HNM=góc HCB mà góc HBC=góc HCB nên:
góc HMN=góc HNM; góc EMN=góc MNC; góc MNC=góc HMB
=>góc EMN=góc HMB
=>MN là phân giác của góc EMB
a) Ta có: \(\widehat{ABC}+\widehat{MBC}=\widehat{ABM}\)(tia BC nằm giữa hai tia BA,BM)
nên \(\widehat{ABC}+\widehat{MBC}=90^0\)(1)
Ta có: \(\widehat{ACB}+\widehat{MCB}=\widehat{ACM}\)(tia CB nằm giữa hai tia CA,CM)
nên \(\widehat{ACB}+\widehat{MCB}=90^0\)(2)
Ta có: ΔABC cân tại A(gt)
nên \(\widehat{ABC}=\widehat{ACB}\)(hai góc ở đáy của ΔABC cân tại A)(3)
Từ (1), (2) và (3) suy ra \(\widehat{MBC}=\widehat{MCB}\)
Xét ΔMBC có \(\widehat{MBC}=\widehat{MCB}\)(cmt)
nên ΔMBC cân tại M(Định lí đảo của tam giác cân)
b) Xét ΔABM vuông tại B và ΔACM vuông tại C có
AB=AC(ΔABC cân tại A)
BM=CM(ΔMBC cân tại M)
Do đó: ΔABM=ΔACM(hai cạnh góc vuông)
⇒\(\widehat{BAM}=\widehat{CAM}\)(hai góc tương ứng)
mà tia AM nằm giữa hai tia AB,AC
nên AM là tia phân giác của \(\widehat{BAC}\)(đpcm)
Ta có: ΔABM=ΔACM(cmt)
nên \(\widehat{BMA}=\widehat{CMA}\)(hai góc tương ứng)
mà tia MA nằm giữa hai tia MB,MC
nên MA là tia phân giác của \(\widehat{BMC}\)(đpcm)
c) Ta có: AB=AC(ΔABC cân tại A)
nên A nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(4)
Ta có: MB=MC(ΔMBC cân tại M)
nên M nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(5)
Từ (4) và (5) suy ra AM là đường trung trực của BC
hay AM⊥BC(đpcm)