K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: ΔABC cân tại A

mà AH là đường trung tuyến

nên AH là phân giác của góc BAC

c: ΔABC cân tại A

mà AH là trung tuyến

nên AH là trung trực của BC

=>I nằm trên trung trực của BC

=>IB=IC

d: Xet ΔABN có góc ABN=góc ANB=góc MBC

nên ΔABN can tại A

=>AB=AN

e: Xét ΔABC co

BM,AM là phân giác

nên M là tâm đừog tròn nội tiếp

=>CM là phân giác của góc ACB

Xét ΔHCM vuông tại H và ΔKCM vuông tại K có

CM chung

góc HCM=góc KCM

=>ΔHCM=ΔKCM

=>MH=MK

a: Xét ΔAMB vuông tại M và ΔANC vuông tại N có

AB=AC
góc BAM chung

=>ΔAMB=ΔAMC

=>góc ABM=góc ACN

b: góc ABM+góc HBC=góc ABC

góc ACN+góc HCB=góc ACB

mà góc ABM=góc ACN và góc ABC=góc ACB

nên góc HBC=góc HCB

=>HB=HC

c: Xét ΔABC có AN/AB=AM/AC

nên NM//BC

NM//BC

=>góc HMN=góc HBC; góc HNM=góc HCB

mà góc HBC=góc HCB

nên góc HMN=góc HNM

góc EMN=góc MNC

góc MNC=góc HMB

=>góc EMN=góc HMB

=>MN là phân giác của góc EMB

1 tháng 8 2023

a: Xét ΔAMB vuông tại M và ΔANC vuông tại N có AB=AC

góc BAM chung

=>ΔAMB=ΔAMC

=>góc ABM=góc ACN

b: góc ABM+góc HBC=góc ABC

góc ACN+góc HCB=góc ACB

mà góc ABM=góc ACN và góc ABC=góc ACB

nên góc HBC=góc HCB

=>HB=HC

c: Xét ΔABC có AN/AB=AM/AC nên NM//BC NM//BC

=>góc HMN=góc HBC; góc HNM=góc HCB mà góc HBC=góc HCB nên:

góc HMN=góc HNM; góc EMN=góc MNC; góc MNC=góc HMB

=>góc EMN=góc HMB

=>MN là phân giác của góc EMB

a) Ta có: \(\widehat{ABC}+\widehat{MBC}=\widehat{ABM}\)(tia BC nằm giữa hai tia BA,BM)

nên \(\widehat{ABC}+\widehat{MBC}=90^0\)(1)

Ta có: \(\widehat{ACB}+\widehat{MCB}=\widehat{ACM}\)(tia CB nằm giữa hai tia CA,CM)

nên \(\widehat{ACB}+\widehat{MCB}=90^0\)(2)

Ta có: ΔABC cân tại A(gt)

nên \(\widehat{ABC}=\widehat{ACB}\)(hai góc ở đáy của ΔABC cân tại A)(3)

Từ (1), (2) và (3) suy ra \(\widehat{MBC}=\widehat{MCB}\)

Xét ΔMBC có \(\widehat{MBC}=\widehat{MCB}\)(cmt)

nên ΔMBC cân tại M(Định lí đảo của tam giác cân)

b) Xét ΔABM vuông tại B và ΔACM vuông tại C có 

AB=AC(ΔABC cân tại A)

BM=CM(ΔMBC cân tại M)

Do đó: ΔABM=ΔACM(hai cạnh góc vuông)

\(\widehat{BAM}=\widehat{CAM}\)(hai góc tương ứng)

mà tia AM nằm giữa hai tia AB,AC

nên AM là tia phân giác của \(\widehat{BAC}\)(đpcm)

Ta có: ΔABM=ΔACM(cmt)

nên \(\widehat{BMA}=\widehat{CMA}\)(hai góc tương ứng)

mà tia MA nằm giữa hai tia MB,MC

nên MA là tia phân giác của \(\widehat{BMC}\)(đpcm)

c) Ta có: AB=AC(ΔABC cân tại A)

nên A nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(4)

Ta có: MB=MC(ΔMBC cân tại M)

nên M nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(5)

Từ (4) và (5) suy ra AM là đường trung trực của BC

hay AM⊥BC(đpcm)