Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Xét tam giác ABC có \(\dfrac{BE}{AB}=\dfrac{CF}{AC}\Rightarrow EF//BC\Rightarrow EF\perp AH\)
Chứng minh được tam giác BEH = tam giác CFH (g.c.g)
\(\Rightarrow EH=HF\)
Nên E đx với F qua H
b) Ta có \(AH\cap BK\cap CI=O\)
Mà \(O\in AH\) và \(AH\) là đường cao
\(\Rightarrow\)BK và CI là đường cao
Chứng minh được \(\Delta AKB=\Delta AIC\left(ch-gn\right)\)
\(\Rightarrow BK=CI;\widehat{ABK}=\widehat{ACI}\)
Mà BE=CF
\(\Rightarrow\Delta BEK=\Delta CFI\left(c.g.c\right)\)
\(\Rightarrow EK=FI\)
Đặt đề hơi ảo vì có 2 góc H nên mình sẽ để CO cắt AB tại I
a: Xét ΔEBH và ΔFCH có
EB=FC
\(\widehat{B}=\widehat{C}\)
BH=CH
Do đó: ΔEBH=ΔFCH
Suy ra: HE=HF
hay H nằm trên đường trung trực của EF(1)
Ta có: AE=AF
nên A nằm trên đường trung trực của EF(2)
Từ (1) và (2) suy ra E và F đối xứng nhau qua AH
a) Vì tam giác ABC cân
Mà AH là đường cao
Suy ra:AH đồng thời cũng là đường trung trực của tam giác ABC(1)
Mặt khác:AB=AC(tam giác ABC cân tại A)
CF=BE
Suy ra:AF=AE(2)
Từ (1) và (2) suy ra AH là đương trung trực của EF->E và F đối xứng vs nhau qua AH
Vậy E và F đối xứng vs nhau qua AH(đpcm)
Phần b mk ko bt lm,sorry bn nha^-^
Vì tg ABC cân tại A(gt), đường cao AH
=> AH đồng thời là đi trung trực của tgABC
=> BH=HC
Xét ΔEBH và ΔFCH có
EB=FC(gt)
ˆB=ˆC( vì tg ABC cân tại A)
BH=CH(cmt)
Do đó: ΔEBH=ΔFCH
Suy ra: HE=HF
hay H nằm trên đường trung trực của EF(1)
Ta có: AE=AF
Điểm A nằm trên đường trung trực của EF(2)
Từ (1) và (2): => E và F đối xứng nhau qua AH