Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A E B C F I M D
a) Xét tam giác BEM và tam giácCFM
có:BM=MC(gt)
góc EBM=gócFCM(tam giác ABC can^)
->T/g BEM=t/g CFM(c.huyền g. nhon)
b)
Xét tam giác vg AEM va t/g vg AFM
có:EM=MF(t/g BEM=t/gAFM)
AM là cạnh chung
->t/g AEM =t/g AFM( c/ huyền -c.góc vg)
->AE=AF(2 cạnh tương ứng)
Xét tam giác AEI và t/g AFI
có:MF=EM(t/g BEM= t/g CFM)
AM là cạnh chung
AF=AE(C/ m trên)
->t/g AEI =t/g AFI(c-c-c)
->EI = IF(2 cạnh tương ứng)
->góc AIE= góc AIF(2 tương ứng)
=>AE là đường trung trực của EF
c(mik ko pt lm)
a và b bạn Hương Sơn
c) Ta có:
\(\Delta ABC\)cân
có AM là đường trung tuyến
=> AM cũng là đường trung trực
=> \(AM\perp BC\)
=> AM = 90 độ
Vì \(\Delta ABC\)cân
=> Góc ABM = góc ACM (1)
mà Góc ABD = góc ACD = 90 độ (2)
Từ (1) và (2) => Góc MBD = góc MCD
Xét \(\Delta DMB\)và \(\Delta DMC\)có :
DM : cạnh chung (1)
Góc MBD = góc MCD ( chứng minh trên ) (2)
BM = MC ( vì AM là đường trung tuyến của tam giác ABC ) (3)
Từ (1) ; (2) và (3) => \(\Delta DMB=\Delta DMC\)(cạnh - góc - cạnh)
=> Góc CMD = góc BMD ( cặp góc tương ứng)
Mà Góc CMD + góc BMD = 180 độ
=> Góc CMD = BMD = 180 : 2 = 90 độ
Vì Góc AMC = 90 độ ( vì AM là đường trung trực)
và góc CMD = 90 độ
=> AMC + CMD = AMD
=> 90 + 90 = AMD
=> AMD = 180 độ
=> Ba điểm A ; M ; D thẳng hàng. ( điều phải chứng minh)
Chúc bạn học tốt !
a: Xét ΔEBM vuông tại E và ΔFCM vuông tại F có
MB=MC
góc B=góc C
=>ΔEBM=ΔFCM
b: Xet ΔAEM vuông tại E và ΔAFM vuông tại F có
AM chung
ME=MF
=>ΔAEM=ΔAFM
=>AE=AF
mà ME=MF
nên AM là trung trực của EF
c: Xét ΔABC có AE/AB=AF/AC
nên EF//BC
d: Xet ΔABD vuông tại B và ΔACD vuông tại C có
AD chung
AB=AC
=>ΔABD=ΔACD
=>BD=CD
=>D nằm trên trung trực của BC
=>A,M,D thẳng hàng
a. AM là phân giác của tam giác ABC cân tại A => AM cũng là đường cao và đường phân giác trong ta giác ABC
=> góc EAM = góc FAM
=> Tam giác EAM = tam giác FAM (cạnh huyền - góc nhọn)
=> EA=FA và EM = FM (1)
TA có: AB =AC => AB - AE = AC - ÀF <=> BE = FC (2)
Và AM là đường trung tuyến của tam giác ABC => BM =MC (3)
Từ (1), (2), (3) => tam giác BEM = tam giác CFM (c-c-c)
A E B F C D M
a, Xét t/g BEM và t/g CFM có:
góc BEM = góc CFM = 90 độ (gt)
MB = MC (gt)
góc B = góc C (gt)
=> t/g BEM = t/g CFM (cạnh huyền - góc nhọn)
b, Xét t/g AEM và t/g AFM có:
EM = FM (t/g BEM = t/g CFM)
góc AEM = góc AFM = 90 độ (gt)
AM chung
=> t/g AEM = t/ AFM (c.g.c)
=> AE = AF
=> tg/ AEF cân tại A
Mà AM là tia phân giác của t/g AEF
=> AM là đường trung trực của t/g AEF hay AM là đường trung trực của EF
c, Vì t.g ABC cân tại A và AM là trung tuyến cuả BC
=> AM cũng là đường trung trực của BC (1)
=> góc AMB = 90 độ
Xét t/g DMB và t/g DMC có:
MB = MC (gt)
góc DMB = góc DMC = 90 độ (cmt)
DM chung
=> t/g DMB = t/g DMC (c.g.c)
=> DB = DC => D thuộc trung trực của BC
Mà MB = MC => M thuộc trung trực của BC
=> DM là trung trực của BC (2)
Từ (1) và (2) => A,D,M thẳng hàng
a./ \(\Delta BEM=\Delta CFM\)vì:
b./ => ME = MF (cạnh tương ứng của 2 tam giác bằng nhau) => M nằm trên trung trực của EF (vì cách đều 2 đầu của EF) (1)
\(\Delta BEM=\Delta CFM\)=> BE = CF => AE = AF ( vì cùng bằng AB - BE = AC - CF)
=> A nằm trên trung trực của EF (vì cách đều 2 đầu của EF) (2)
Từ (1) (2) => AM là trung trực của EF.