Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
câu a
xét tam giác AMB và tg CMD có
BM=MC [M là trung điểm của BC]
AM = MD [gt]
góc AMB= góc DMC[đối đỉnh]
suy ra tam giác AMB=tg CMD[cgc]
câu b
có tg AMB bằng tg CMD [cmt]
suy ra góc ABM = DCM [hai góc tương ứng]
suy ra ab song song với cd
Viết lại câu
How long have Helen and Robert been married?
-> When ………was Helen and Robert married?…………………....……………
Có
\(\left|x-2\right|+\left|x-4\right|=\left|x-2\right|+\left|4-x\right|\ge\left|x-2+4-x\right|=2\)
\(\left|x-3\right|\ge0\)
=> \(\left|x-2\right|+\left|x-4\right|+\left|x-3\right|\ge2\)
Dấu "=" xảy ra
\(\Leftrightarrow\left\{{}\begin{matrix}x=3\\x-2>0\\4-x>0\end{matrix}\right.\) hoặc \(\left\{{}\begin{matrix}x=3\\x-2< 0\\4-x< 0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=3\\x>2\\x< 4\end{matrix}\right.\\\left\{{}\begin{matrix}x=3\\x< 2\\x>4\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow x=3\)
a) \(\Delta ABC\) cân tại A, AE là đường cao nên đồng thời AE là đường phân giác.
\(\Delta ACD\) cân tại A, AF là đường cao nên đồng thời là AF là đường phân giác.
AE và AF là các tia phân giác của hai góc kề bù \(\widehat{BAC},\widehat{CAD}\) nên AE \(\perp\) AF hay \(\widehat{EAF}=90^o\).
Ta có: ΔABC cân tại A
⇒ AE là đường cao đồng thời là đường phân giác ∠BAC.
+) Tam giác ABC cân tại A nên AB = AC.
Lại có: AD = AB( giả thiết)
Suy ra: AD = AC
Do đó: ΔADC cân tại A
+) Trong tam giác ADC có: AF là đường caon nên đồng thời là đường phân giác ∠CAD.
Tham khảo :)) 3 chữ in hoa gần nhau nghĩa là dấu góc nha :3
a, Xét ∆ABC cân tại A có AE là đường cao
=> AE đồng thời là đường pg của ∆ABC
(T/c ∆ cân)
=> AE là pg BAC
=> BAC = 2CAE (1)
Ta có AB = AC (∆ABC cân tại A) ; AB = AD (A là trđ BD)
=> AC = AD
=>∆ACD cân tại A
Mà ∆ACD có đường cao AF (gt)
=> AF là pg CAD (t/c tam giác cân)
=> CAD = 2CAF (2)
Từ (1) và (2/
=> 2(CAE + CAF) = BAC + DAC
lại có BAC + DAC = 180° (kêt bù)
=> 2(CAE + CAF) = 180°
=> 2. EAF = 180°
=> EAF = 90°
Vậy....
b, Tứ giác AECF có EAF = AEC = AFC = 90°
=> Tứ giác AECF là hcn
=> ECF = 90°
Hay BCD = 90°
Do đó ABC + BDC = 90°
Lại có ABC + EAB= 90° (∆EAB vuông tại E)
=> BDC = EAB
Hay ADF = EAB
Xét ∆BAE vuông tại E và ∆ADF vuông tại F có
BA = AD (gt)
EAB = ADF (cmt)
=>∆BAE = ∆ADF (ch-gn)
c, Ta có ∆BAE = ∆ADF (cmt)
=> ABC = DAF (2 góc t/ứ)
Mà 2 góc này ở vị trí slt
=> BC // AF
Học tốt!