K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 5 2018

Hình tự vẽ nha

Vì BM và CN là 2 đường trung tuyến ứng với 2 cạnh bên của tam giác cân

=> BM = CN ( Có trong SGK Toán tập 2 bài 4)_

Xét tam giác ABC có:

BM là đường trung tuyến ứng với cạnh AC

CN là đường trung tuyến ứng với cạnh AB

BM và CN cắt nhau tại K

=> K là trọng tâm của tam giác ABC

=> BK = 2/3 BM, CK = 2/3 CN và BM = 3KM

Xét tam giác KBC 

=> BK + KC > BC (Bất đẳng thức tam giác)

Mà BK = 2/3 BM, CK = 2/3 CN

=> 2/3 BM + 2/3 CN > BC

     2/3 (BM + CN) > BC

    Mà BM = CN

=> 2/3 . 2BM > BC

     4/3 BM  > BC

Mà BM = 3KM

=> 4/3 . 3KM > BC

     4KM > BC (ĐPCM)

10 tháng 4 2019

Minh Nguyễn Cao nếu như dựa vào cái tính chất đó thì ko đc mà phải tự chứng minh

28 tháng 6 2021

A B C N M K

a) Ta có: AN = NB = 1/2AB (gt)

           AM = MC = 1/2AC (gt)

mà AB = AC (gt)

=> AN = NB = AM = MC
Xét tam giác ABM và tam giác ACN 

có: AM = AN (gt)

 \(\widehat{A}\): chung

AB = AC (gt)

=> tam giác ABM = tam giác ACN (c.g.c)

b) Ta có: AN = NB (gt)

 AM = MC (gt)

=> NM là đường trung bình của tam giác ABC

=> MN // BC

c) Ta có: tam giác ABM = tam giác ACN (cmt)

=> \(\widehat{ABM}=\widehat{ACN}\)

Mà \(\widehat{B}=\widehat{ABM}+\widehat{MBC}\)

 \(\widehat{C}=\widehat{ACN}+\widehat{NCB}\)

\(\widehat{B}=\widehat{C}\) (gt)

=> \(\widehat{KBC}=\widehat{KCB}\) => tam giác KBC cân tại K có KD là đường trung truyến => KD cũng là đường cao => KD \(\perp\)BC

Tam giác ABC cân tại A có AD là đường trung tuyến => AD cũng là đường cao => AD \(\perp\)BC

=> KD \(\equiv\)AD => A, K, D thẳng hàng

a, Xét \(\Delta ABM\)và \(\Delta CAN\) có

AB = AC ( \(\Delta\)cân )

\(\widehat{A}\)  chung

AN = AM 

\(\Rightarrow\Delta ABM=\Delta CAN\)( c.g.c)

16 tháng 6 2020

C) MN // BC

o l m . v n

a, tam giác ABC cân tại A (gt)

=> AB = AC (Đn)

có M;N lần lượt là trung điểm của AC;AB (gt) => AM = MC = 1/2AC và AN = BN = 1/2BC (tc)

=> AN = AM = BN = CM 

xét tam giác NBC và tam giác MCB có : BC chung

^ABC = ^ACB do tam giác ABC cân tại A (Gt)

=> tam giác NBC = tam giác MCB (c-g-c)                 (1)

b, (1) => ^KBC = ^KCB (đn)

=> tam giác KBC cân tại K (dh)

c, có tam giác ABC cân tại A (gt)  => ^ABC = (180 - ^BAC) : 2 (tc)

có AM = AN (câu a) => tam giác AMN cân tại A (đn) => ^ANM = (180 - ^BAC) : 2 (tc)

=> ^ABC = ^ANM mà 2 góc này đồng vị

=> MN // BC (đl)

20 tháng 2

phải là 1/2 AB

26 tháng 4 2018

a) Ta có: ΔABC cân tại A

Nên: AB=AC

Mà: CN là đường trung tuyến => NB=NA

       BM là đường trung tuyến => MA=MC

Suy ra: NB=NA=MA=MC

Xét ΔBNC và ΔCMB

Có: BN=CM (cmt)

      \(\widehat{B}\)=\(\widehat{C}\)(do ΔABC cân)

      BC chung

Suy ra: ΔBNC=ΔCMB (c-g-c)

26 tháng 4 2018

giải:

a,Xét tam giác BCN và tam giác CBM có

cạnh BC chung, Góc B=góc C(vì Tam giác ABC cân tại A),BN=CN(Vì \(BN=\frac{1}{2}AB=\frac{1}{2}AC=CM\))

=>tam giác BCN=tam giác CBM(c.g.c)

b,ta có :tam giác BCN=tam giác CBM(cm1)

=>góc B1=góc C1( 2 góc tương ứng)

=>tam giác BKC cân tại K

c,Xét tam giác BKC có:

BC<KB+KC (bất đẳng thức tam giác)   (1)

mà BK=2KM, CK=2KN, Mà BK=CK, KM=KN       (2)

Từ (1) và (2)=>BC<KB+KC=4KM

Vậy BC<4KM      (đpcm)


A B C N M K 1 1