Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABE vuông tại E và ΔACF vuông tại F có
góc BAE chung
=>ΔABE đồng dạng với ΔACF
=>AB/AC=AE/AF
=>AE/AB=AF/AC và AE*AC=AB*AF
b: Xét ΔAEF và ΔABC có
AE/AB=AF/AC
góc A chung
=>ΔAEF đồng dạng với ΔABC
=>góc AEF=góc ACB
c; góc AFH=góc AEH=90 độ
=>AFHE nội tiếp (I)
=>IF=IE
góc BFC=góc BEC=90 độ
=>BFEC nội tiếp (M)
=>MF=ME
=>MI là trung trực của EF
=>MI vuông góc EF
a: Xét ΔAKB vuông tại K và ΔANC vuông tại N có
góc KAB chung
=>ΔAKB đồng dạng với ANC
=>AK/AN=AB/AC
=>AK*AC=AB*AN và AK/AB=AN/AC
b: Xét ΔAKN và ΔABC có
AK/AB=AN/AC
góc KAN chung
=>ΔAKN đồng dạng với ΔABC
=>góc AKN=góc ABC
a) Vì \(\Delta ABC\) cân tại A, có AH là đường cao
\(\Rightarrow AH\) vừa là đường cao, vừa là đường phân giác của \(\Delta ABC\)
\(\Rightarrow\widehat{BAH}=\widehat{CAH}=\dfrac{\widehat{A}}{2}\)
Xét \(\Delta ABH\) và \(\Delta ACH\) có:
\(\widehat{BAH}=\widehat{CAH}\left(cmt\right)\)
\(\widehat{AHB}=\widehat{AHC}=90^0\)
\(AH\): cạnh chung
\(\Rightarrow\Delta ABH=\Delta ACH\left(ch-gn\right)\)
???, bạn ơi, hình như có 2 điểm M, : " AM cắt BC,BK lần lượt tại M và N " ?
a: Ta có: ΔAHB vuông tại H
mà HI là đường trung tuyến ứng với cạnh huyền AB
nên IH=IB
hay ΔIBH cân tại I
Số đó là :
95 214 - 2 524 = 92 690
Đáp số : 92 690