K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có: \(\widehat{ABD}+\widehat{ABC}=180^0\)(hai góc kề bù)

\(\widehat{ACE}+\widehat{ACB}=180^0\)(hai góc kề bù)

mà \(\widehat{ABC}=\widehat{ACB}\)(ΔABC cân tại A)

nên \(\widehat{ABD}=\widehat{ACE}\)

Xét ΔABD và ΔACE có

AB=AC

\(\widehat{ABD}=\widehat{ACE}\)

BD=CE

Do đó: ΔABD=ΔACE

=>AD=AE và \(\widehat{ADB}=\widehat{AEC}\)

Xét ΔHBD vuông tại H và ΔKCE vuông tại K có

BD=CE

\(\widehat{HDB}=\widehat{KEC}\)

Do đó; ΔHBD=ΔKCE

=>\(\widehat{HBD}=\widehat{KCE}\)

mà \(\widehat{HBD}=\widehat{OBC}\)(hai góc đối đỉnh)

và \(\widehat{KCE}=\widehat{OCB}\)(hai góc đối đỉnh)

nên \(\widehat{OBC}=\widehat{OCB}\)

=>OB=OC

Xét ΔABO và ΔACO có

AB=AC

BO=CO

AO chung

Do đó: ΔABO=ΔACO

=>\(\widehat{BOA}=\widehat{COA}\)

=>OA là phân giác của góc BOC

Phần a:
Vì Δ ABC cân ở A
=> ^ABC = ^ACB
và AB = AC mà
^ABD + ^ABC = 180° (kề bù)
và ^ACE + ^ACB =180° (kề bù )
=> ^ABD = ^ACE
Xét ΔABD và ΔACE có:
AB = AC (cmt)
^ABD = ^ACE(cmt)
BD = CE (gt)
=>ΔABD = ΔACE (c.g.c)
=> AD = AE hay ΔADE cân ở A
=> đcpcm

25 tháng 2 2019

Vì Δ ABC cân ở A
=> ^ABC = ^ACB
và AB = AC mà
^ABD + ^ABC = 180° (kề bù)
và ^ACE + ^ACB =180° (kề bù )
=> ^ABD = ^ACE
Xét ΔABD và ΔACE có:
AB = AC (cmt)
^ABD = ^ACE(cmt)
BD = CE (gt)
=>ΔABD = ΔACE (c.g.c)
=> AD = AE hay ΔADE cân ở A

=>AD=AE (Hai cạnh tương ứng)

a: Xét ΔABD và ΔACE có

AB=AC

\(\widehat{ABD}=\widehat{ACE}\)

BD=CE
Dođó: ΔABD=ΔACE

Suy ra: AD=AE
hay ΔADE cân tại A

b: Xét ΔAHB vuông tại H và ΔAKC vuông tại K có

AB=AC

\(\widehat{HAB}=\widehat{KAC}\)

Do đó: ΔAHB=ΔAKC

Suy ra: BH=CK và AH=AK

Xét ΔADE có 

AH/AD=AK/AE

Do đó: HK//DE

hay HK//BC

c: Ta có: \(\widehat{OBC}=\widehat{HBD}\)

\(\widehat{OCB}=\widehat{KCE}\)

mà \(\widehat{HBD}=\widehat{KCE}\)

nên \(\widehat{OBC}=\widehat{OCB}\)

hay ΔOBC cân tại O

10 tháng 1 2022

thanks bạn nha. nhưng mà bạn có làm đc phần d khồng?????????????????

 

a) Ta có: \(\widehat{ABD}+\widehat{ABC}=180^0\)(hai góc kề bù)

\(\widehat{ACE}+\widehat{ACB}=180^0\)(hai góc kề bù)

mà \(\widehat{ABC}=\widehat{ACB}\)(hai góc ở đáy của ΔABC cân tại A)

nên \(\widehat{ABD}=\widehat{ACE}\)

Xét ΔABD và ΔACE có

AB=AC(ΔABC cân tại A)

\(\widehat{ABD}=\widehat{ACE}\)(cmt)

BD=CE(gt)

Do đó: ΔABD=ΔACE(c-g-c)

b) Ta có: ΔABD=ΔACE(cmt)

nên AD=AE(hai cạnh tương ứng)

Xét ΔADE có AD=AE(cmt)

nên ΔADE cân tại A(Định nghĩa tam giác cân)

c) Xét ΔDHB vuông tại H và ΔEKC vuông tại K có

DB=CE(gt)

\(\widehat{HDB}=\widehat{KEC}\)(hai góc ở đáy của ΔADE cân tại A)

Do đó: ΔDHB=ΔEKC(cạnh huyền-góc nhọn)

d) Ta có: ΔDHB=ΔEKC(cmt)

nên \(\widehat{HBD}=\widehat{KCE}\)(hai góc tương ứng)

mà \(\widehat{HBD}=\widehat{OBC}\)(hai góc đối đỉnh)

và \(\widehat{KCE}=\widehat{OCB}\)(hai góc đối đỉnh)

nên \(\widehat{OBC}=\widehat{OCB}\)

Xét ΔOBC có \(\widehat{OBC}=\widehat{OCB}\)(cmt)

nên ΔOBC cân tại O(Định lí đảo của tam giác cân)

e) Xét ΔABO và ΔACO có

AB=AC(ΔABC cân tại A)

AO chung

BO=CO(ΔOBC cân tại O)

Do đó: ΔABO=ΔACO(c-c-c)

nên \(\widehat{BOA}=\widehat{COA}\)(hai góc tương ứng)

mà tia OA nằm giữa hai tia OB,OC

nên OA là tia phân giác của \(\widehat{BOC}\)(đpcm)

3 tháng 2 2021

cảm ơn bạn rất nhiếubatngo

 

a: Xét ΔABD và ΔACE có 

AB=AC

\(\widehat{ABD}=\widehat{ACE}\)

BD=CE

Do đó: ΔABD=ΔACE

Suy ra: \(\widehat{D}=\widehat{E}\)

Xét ΔHDB vuông tại H và ΔKEC vuông tại K có 

BD=CE

\(\widehat{D}=\widehat{E}\)

Do đó: ΔHDB=ΔKEC

Suy ra: BH=CK

b: Xét ΔAHB vuông tại H và ΔAKC vuông tại K có 

AB=AC

BH=CK

Do đó: ΔAHB=ΔAKC

25 tháng 2 2020

a, tam giác ABC cân tại A (gt) 

=> góc ABC = góc ACB (đl)

góc ABC + góc ABD = 180

góc ACB + góc ACE = 180

=> góc ABD = góc ACE 

xét tam giác DBA và tam giác ECA có : BD = CE (gt)

AB = AC (gT)

=> tam giác DBA = tam giác ECA (c-g-c)

=> AD = AE (đn)

b, BM = CM do M là trđ của BC (gt)

BD = CE (gt)

BM + BD = DM

MC + CE = ME 

=> MD = ME 

xét tam giác AMD và tam giác AME có : AM chung

AD = AE (Câu a)

=> tam giác MAD = tam giác MAE (c-c-c)

=> góc DAM = góc EAM (đn) mà AM nằm giữa AD và AE 

=> AM là pg của góc EAD  (Đn)

c, tam giác DAM = tamg iacs EAM (câu b)

=> góc ADE = góc AED (đn)

xét tam giác DBH và tam giác ECK có : BD = CE (gt)

góc BHD = góc CKE = 90

=> tam giác DBH = tam giác ECK (ch-gn)

=> BH = CK (đn)