Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mình làm tắt nhá, miễn sao cho bạn hiểu :))
a) Xét \(\Delta ABC\) cân tại A \(\Rightarrow AB=AC;\) góc B = góc C
Mình nghĩ là \(AB>AD\) mới đúng. CM được : \(BD=\frac{1}{3}BC< \frac{1}{2}BC\). ( 1 )
Có góc ADB \(>90^0\) theo ( 1 ) suy ra góc ADB lớn nhất \(\Delta ABD\)
\(\Rightarrow AB\) lớn nhất \(\Delta ABD\Leftrightarrow AB>AD\)
b) Có \(\Delta ABD=\Delta FED\left(c.g.c\right)\Rightarrow AB=FE\) ( 2 cạnh tương ứng )
c) Phải là góc BAD < góc DAE mới đúng
Có \(\Delta ABD=\Delta ACE\left(c.g.c\right)\Rightarrow\) góc ABD = góc ACE ( tương ứng )
=> góc ADE = góc AED ( kề bù ) => \(\Delta ADE\) cân tại A \(\Rightarrow AD=AE\Leftrightarrow AB>AE\)
\(\Delta ADE=\Delta FDB\left(c.g.c\right)\Rightarrow AE=FB\) ( tương ứng )
Mà \(AB>AE\Rightarrow AB>FB\Leftrightarrow\) góc BAD > góc BFD ( 1 )
Mà \(\Delta ADE=\Delta FDB\left(c.g.c\right)\Rightarrow\) góc EAD = góc BFD ( tương ứng ) ( 2 )
Từ ( 1 )( 2 ) => góc BAD < góc DAE
Tam giác ABC cân tại A => AB = AC
=> Góc ABD = góc ACE
Xét tam giác ABD và tam giác ACE
AB = AC ( cmt )
Góc ABD = góc ACE ( cmt )
BD = CE ( gt )
=> Tam giác ABD = tam giác ACE ( c.g.c )
=> Góc BAD = góc CAE ( 2 góc tương ứng )
=> AD = AC ( 2 cạnh tương ứng )
Xét tam giác ADE và tam giác ACE
AD = AC ( cmt )
DE = EC( gt )
AE chung
=> tam giác ADE= tam giác ACE ( c.c.c )
=> góc DAE = góc EAC ( 2 góc tương ứng )
Ta có: góc BAD = góc EAC ( cmt )
Góc DAE = góc EAC ( cmt )
=> góc BAD = góc DAE = góc EAC
a) Ta có: tam giác ABC cân tại A (gt)
=> Góc B = góc C1, AB = AC (định lí)
Xét tam giác ABD và tam giác ACE có:
AB = AC (chứng minh trên)
BD = CE (gt)
Góc B = góc C1 (chứng minh trên)
=> Tam giác ABD = tam giác ACE (c.g.c)
=> Góc BAD = góc CAE (2 góc tương ứng) (đpcm)
b) Ta có: tam giác ABD = tam giác ACE (chứng minh trên)
=> AB = AC (2 cạnh tương ứng)
Xét tam giác ADE và tam giác CEK có:
DE = CE (gt)
Góc AED = góc CEK (2 góc đối đỉnh)
AE = EK (gt)
=> Tam giác ADE = tam giác CKE (c.g.c)
=> AD = CK (2 cạnh tương ứng)
Kẻ đường cao AH
Ta có: DH < AH
=> AD < AB mà AB = AC (chứng minh trên)
=> AC > AD (đpcm)
c) Ta có: AD < AC
Mà AD = CK (2 cạnh tương ứng)
=> CK < AC
Xét tam giác ACK có AC > CK
=> Góc CAK < góc K (định lí)
Lại có: góc BAD = góc CAE (chứng minh trên)
=> Góc BAD < góc K
Mà góc K = DAE (vì tam giác ADE = tam giác KCE)
=> Góc BAD < góc DAE
hay góc BAD = góc CAE < góc DAE (đpcm)
a: góc FEB+góc FBE=45+45=90 độ
=>EF vuông góc BC
b: ΔDFC vuông tại F có góc C=45 độ
nên ΔDFC vuông cân tại F
=>FD=FC
c: Xét ΔBEC có
EF,CA là đường cao
EF cắt CA tại D
=>D là trực tâm
=>BD vuông góc CE