K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 3 2021

bạn tự vẽ hình ạ

Xét tam giác BAM và tam giác MAN có:

BM=NM

góc BAM=góc NAm

AM:chung

suy ra:2 tam giác bằng nhau(C.G.C)

Suy ra góc BAM=gócMAN

Nhớ vote 5 sao nha

 

 

16 tháng 3 2021

Cm tam giác bằng nhau sai rồi nhé

18 tháng 7 2019

a) Dễ dàng chứng minh \(\Delta ABN=\Delta ACM\left(c.c.c\right)\)

Suy ra AM = AN. Mặt khác tam giác giác ABC cân tại A có AH là đường trung tuyến xuất phát từ đỉnh nên AH cũng là đường trung trực. Do đó \(AH\perp BC\)

b)Do H là trung điểm BC nên HB = BC/ 2 = 3

Mặt khác BM = MN = NC và BM + MN + NC = BC nên suy ra BM = BC/3 = 2

Mà ta có HM = BH - BM = 3 - 2 = 1 (1)

Áp dụng định lí Pythagoras vào tam giác AHB vuông tại H (Chứng minh trên) suy ra \(AH=\sqrt{AB^2-BH^2}=\sqrt{5^2-3^2}=4\) (2)

Từ (1) và (2) áp dụng định lí Pythagoras vào tam giác AHM vuông tại H sẽ suy ra AM.

c) Mình thấy nó sao sao ý. Vẽ hình ra 3 góc đó bằng nhau mà (đã vẽ hình chính xác). Bạn xem lại đề để mình còn biết đường suy nghĩ nha!

18 tháng 7 2019

tth_new: nhìn thế thôi chứ không bằng đâu. Đề đúng rồi đấy. (tớ cũng đang tìm cách, nhưng chưa ra)

a: Xét ΔBAM vuông tại A và ΔCAN vuông tại A có

BA=CA

góc B=góc C

=>ΔBAM=ΔCAN

b: ΔBAM=ΔCAN

=>AM=AN

góc MAB=90 độ

góc B=30 độ

=>góc AMN=60 độ

=>ΔAMN đều

góc NAB=120-90=30 độ=góc B

=>ΔNAB cân tại N

góc MAC=120-90=30 độ=góc C

=>ΔMAC cân tại M

18 tháng 9 2023

a) Xét 2 tam giác vuông BAM và CAN có:

\(\widehat{BAM} = \widehat{CAM}(=90^0)\)

AB=AC (Do tam giác ABC cân tại A)

\(\widehat B = \widehat C\) (Do tam giác ABC cân tại A)

=>\(\Delta BAM = \Delta CAN\)(g.c.g)

b) Cách 1: 

Xét tam giác ABC cân tại A, có \(\widehat {A{\rm{ }}} = 120^\circ \) có:

\(\widehat B = \widehat C = \frac{{{{180}^o} - {{120}^o}}}{2} = {30^o}\).

Xét tam giác ABM vuông tại A có:

\(\widehat {B} + \widehat {BAM} + \widehat {AMB} = {180^o}\\ \Rightarrow {30^o} + {90^o} + \widehat {AMB} = {180^o}\\ \Rightarrow \widehat {AMB} = {60^o}\\ \Rightarrow \widehat {AMC} = {180^o} - \widehat {AMB} = {180^o} - {60^o} = {120^o}\)

Xét tam giác MAC có:

\(\begin{array}{l}\widehat {AMC} + \widehat {MAC} + \widehat C = {180^o}\\ \Rightarrow {120^o} + \widehat {MAC} + {30^o} = {180^o}\\ \Rightarrow \widehat {MAC} = {30^o} = \widehat C\end{array}\)

\(\Rightarrow \) Tam giác AMC cân tại M.

Vì \(\Delta BAM = \Delta CAN\)

=> BM=CN ( 2 cạnh tương ứng)

=> BM+MN=CN+NM

=> BN=CM

Xét 2 tam giác ANB và AMC có:

AB=AC (cmt)

\(AN = AM\)(do \(\Delta BAM = \Delta CAN\))

BN=MC (cmt)

=>\(\Delta ANB = \Delta AMC\)(c.c.c)

Mà tam giác AMC cân tại M.

=> Tam giác ANB cân tại N.

Cách 2: 

Xét tam giác ABC cân tại A, có \(\widehat {A{\rm{ }}} = 120^\circ \) có:

\(\widehat B = \widehat C = \frac{{{{180}^o} - {{120}^o}}}{2} = {30^o}\).

Xét tam giác ABM vuông tại A có:

\(\widehat B + \widehat {BAM} + \widehat {AMB} = {180^o}\\ \Rightarrow {30^o} + {90^o} + \widehat {AMB} = {180^o}\\ \Rightarrow \widehat {AMB} = {60^o}\)

Vì \(\Delta BAM = \Delta CAN\) nên AM = AN (2 cạnh tương ứng)

=> \(\Delta AMN\) đều (Tam giác cân có 1 góc bằng 60 độ)

=> \(\widehat {NAM}=60^0\)

Ta có: \(\widehat{BAN}+\widehat{NAM}=\widehat{BAM}\)

=> \(\widehat{BAN} + 60^0=90^0\)

=> \(\widehat{BAN}=30^0\)

Xét tam giác ABN có \(\widehat{BAN}=\widehat{ABN}(=30^0\) nên \(\Delta ABN\) cân tại N.

Ta có: \(\widehat{CAM}+\widehat{NAM}=\widehat{CAN}\)

=> \(\widehat{CAM} + 60^0=90^0\)

=> \(\widehat{CAM}=30^0\)

Xét tam giác ACM có \(\widehat{CAM}=\widehat{ACM}(=30^0\) nên \(\Delta ACM\) cân tại M.