Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Em tham khảo tại đây nhé.
Câu hỏi của Phạm Bá Gia Nhất - Toán lớp 7 - Học toán với OnlineMath
a) Xét tam giác ADB và AEC có:
AD = AE (gt)
AB = AC (gt)
Góc A chung
\(\Rightarrow\Delta ADB=\Delta AEC\left(c-g-c\right)\Rightarrow BD=CE\)
b) Do AB = AC; AD = AE nên BE = DC
Xét tam giác CEB và BDC có:
CE = BD (cma)
Cạnh BC chung
BC = CD (cmt)
\(\Rightarrow\Delta CEB=\Delta BDC\left(c-c-c\right)\)
c) Do \(\Delta ADB=\Delta AEC\Rightarrow\widehat{EBI}=\widehat{DCI}\)
Do \(\Delta CEB=\Delta BDC\Rightarrow\widehat{BEI}=\widehat{CDI}\)
Xét tam giác BIE và tam giác CID có:
\(\widehat{EBI}=\widehat{DCI}\)
\(\widehat{BEI}=\widehat{CDI}\)
BE = CD
\(\Rightarrow\Delta BIE=\Delta CID\left(g-c-g\right)\)
d) Do \(\Delta BIE=\Delta CID\Rightarrow IB=IC\)
Lại có AB = AC nên IA là trung trực của BC
Vậy IA đi qua trung điểm F của BC hay A, I, F thẳng hàng.
Em tham khảo tại đây nhé.
Câu hỏi của Phạm Bá Gia Nhất - Toán lớp 7 - Học toán với OnlineMath
a: Xét ΔABE và ΔACD có
AB=AC
\(\widehat{BAE}\) cung
AE=AD
Do đó: ΔABE=ΔACD
Suy ra: BE=CD
b: Xét ΔDBC và ΔECB có
DB=EC
DC=EB
BC chung
Do đó: ΔDBC=ΔECB
Xét ΔHDB và ΔHEC có
\(\widehat{HDB}=\widehat{HEC}\)
DB=EC
\(\widehat{HBD}=\widehat{HCE}\)
Do đó:ΔHBD=ΔHCE
c: Ta có: ΔHBD=ΔHCE
nên HB=HC
Xét ΔABH và ΔACH có
AB=AC
AH chung
BH=CH
DO đó ΔABH=ΔAHC
Suy ra: \(\widehat{BAH}=\widehat{CAH}\)
hay AH là tia phân giác của góc BAC
d:Ta có: ΔABC cân tại A
mà AH là đường phân giác
nên AH là đường cao
e: Xét ΔABC có AD/AB=AE/AC
nên DE//BC
a, Xét tam giác ADB và tam giác AEC có :
AE = AD ( gt )
\(\widehat{A}\) chung
AB = AC ( gt )
=> \(\Delta ADB=\Delta AEC\left(c-g-c\right)\)
b, Do \(\Delta ADB=\Delta AEC\) ( câu a, )
=> \(\widehat{ABD}=\widehat{ACE}\) ( 2 góc tương ứng )
BD nằm giữa 2 tia EB và EC
=> \(\widehat{EBD}+\widehat{CBD}=\widehat{B}\)
\(\Rightarrow\widehat{CBD}=\widehat{B}-\widehat{EBD}\) ( 1 )
CE nằm giữa 2 tia CD và CB
\(\Rightarrow\widehat{BCE}+\widehat{DCE}=\widehat{C}\)
\(\Rightarrow\widehat{BCE}=\widehat{C}-\widehat{DCE}\) ( 2 )
Từ ( 1 ) và ( 2 )
=> \(\widehat{CBD}=\widehat{BCE}\) hay \(\widehat{IBC}=\widehat{ICB}\)
Xét tam giác IBC có
\(\widehat{IBC}=\widehat{ICB}\)
=> tam giác IBC cân tại I
c, Xét tam giác AED có :
AE = AD ( gt )
=> Tam giác AED cân tại A
=> \(\widehat{AED}=\dfrac{180^0-\widehat{A}}{2}\)( 3 )
Tam giác ABC cân tại A
=> \(\widehat{B}=\dfrac{180^0-\widehat{A}}{2}\) ( 4 )
Từ ( 3 ) , ( 4) => \(\widehat{AED}=\widehat{B}\)
Đường thẳng AB bị 2 đường thẳng ED và BC cắt tạo thành cặp góc đồng vị bằng nhau \(\widehat{AED}=\widehat{B}\)
=> ED // BC ( đpcm)
a: Xét ΔABD và ΔACE có
AB=AC
\(\widehat{BAD}\) chung
AD=AE
Do đó: ΔABD=ΔACE
b: Xét ΔHBC có \(\widehat{HBC}=\widehat{HCB}\)
nên ΔHBC cân tại H
a, Xét tam giác ABE và tam giác ACD
AB = AC
AE = AD
^A _ chung
Vậy tam giác ABE = tam giác ACD (c.g.c)
=> BE = CD ( 2 cạnh tương ứng )
=> ^ABE = ^ACD ( 2 góc tương ứng )
b, Ta có BD = AB - AD ; EC = AC - AE => BD = EC
Xét tam giác KBD và tam giác KCE có
^BKD = ^CKE ( đối đỉnh )
^KBD = ^KCE (cmt)
BD = CE (cmt)
Vậy tam giác KBD = tam giác KCE (g.c.g)
c, Xét tam giác ABH và tam giác ACH có
^B = ^C
AH _ chung
AB = AC
Vậy tam giác ABH = tam giác ACH ( c.g.c )
=> ^BAH = ^CAH ( 2 góc tương ứng )
=> AH là đường phân giác
hay AK là đường phân giác
d, Xét tam giác ABC cân tại A có AK là phân giác đồng thời là đường cao
hay AK vuông BC
e, Ta có AD/AB = AE/AC => DE//BC (Ta lét đảo)
Chứng minh
Xét tam giác ADBvà tam giác AEC có
AD=AE(GT)
DAB=EAC (góc chung )
AB=AC(do tam giác ABC cân tại A)
=>Tam giác ABD=Tam giác AEC
=>BD=EC(2 cạnh tương ứng )