K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 2 2015

xét TG AMC và TG ANB có

       AC=AB (TG ABC cân tại A) 

       G A chung

       AM=AN (GT)

 S  ra TG AMC=TG ANB (c.g.c)

ra CM=BN (2 cạnh tg ứng)

b) Vì TG AMC=TG ANB (cmt)

     S ra G ACM=G ABN (2 góc tg ứng)

        * G ACM+G MCB = G ACB 

            G ABN+G NBC = G ABC

            mà G ACM=G ABN (cmt)

                  G ACB=G ABC ( TG ABC cân tại A)

                 S raG MCB=G NBC 

                 S ra TG OBC cân tại O

                                    (2 góc ở đấy bằng nhau)

25 tháng 11 2017

xét TG AMC và TG ANB có

       AC=AB (TG ABC cân tại A) 

       G A chung

       AM=AN (GT)

 S  ra TG AMC=TG ANB (c.g.c)

S ra CM=BN (2 cạnh tg ứng)

b) Vì TG AMC=TG ANB (cmt)

     S ra G ACM=G ABN (2 góc tg ứng)

        * G ACM+G MCB = G ACB 

            G ABN+G NBC = G ABC

            mà G ACM=G ABN (cmt)

                  G ACB=G ABC ( TG ABC cân tại A)

                 S raG MCB=G NBC 

                 S ra TG OBC cân tại O

                                    (2 góc ở đấy bằng nhau)

Bài làm

a) Ta có: AM = MB = AB

AN +NC = AC

Mà AM = AN ( gt ), AB = AC ( ∆ABC cân )

=> BM = CN .

b) Xét tam giác ABN và tam giác ACM có:

AB = AC ( ∆ABC cân )

^A chung

AM = AN ( gt )

=> ∆ABN = ∆ACM ( c.g.c )

c) Vì ∆ABN = ∆ACM ( cmt )

=> ^ABN = ^ACM ( hai góc tương ứng ).

=> ^AMC = ^ANB

Ta có: ^AMC + ^BMC = 180°. ( Kề bù )

  ^ANB + ^BNC = 180° ( kề bù )

Mà ^AMC = ^ANB ( cmt )

=> ^BMC = ^CNB 

Xét tam giác MIB và tam giác NIC có:

^BMC = ^CNB ( cmt )

BM = NC ( cmt )

^ABN = ^ACM ( cmt )

=> ∆MIB = ∆NIC ( g.c.g )

=> BI = IC ( hai cạnh tương ứng )

=> ∆BIC cân tại I

5 tháng 3 2020

Cho mình ghép phần a và b lại nhé ;)))

Xét tam giác ABN và tam giác ACM, ta có:

AB=AC(tam giác ABC cân)

AM=AN(gt)

\(\widehat{A}\):góc chung

Suy ra \(\Delta ABM=\Delta ACN\left(c.g.c\right)\)

=>BM=CN(2 góc tương ứng)

28 tháng 7 2017

A B C M N 100

a) +Xét tam giác ABC cân tại A có \(\widehat{A}\)= 100o

=>\(\widehat{B}=\widehat{C}=40^o\)

TT ta có: Tam giác AMN cân(AM=AN) tại A có\(\widehat{A}\)=100o

=>\(\widehat{AMN}=\widehat{ANM}=40^o\)

=>\(\widehat{B}=\widehat{C}\)\(=\widehat{AMN}=\widehat{ANM}\)

=>\(\widehat{B}=\widehat{AMN}\)

Mà hai góc này đồng vị =>MN//BC

+Xét tam giác AMC và tam giác ANB có:

AM=AN

 chung

AC=AB

Do đó tam giác AMC= tam giác ANB(c.g.c)

Suy ra BN=CM(hai cạnh t.ứ)

Bài 2 để tí mik lm tiếp, mik đag bận, bạn tích mik để mik có cái để tl tiếp nhé

Chúc học tốt

8 tháng 4 2015

a.xét tam giác BAN và tam giác CAM ta có:
AM=AN (GT)
AB=AC ( tam giác ABC cân tại A)
A là góc chung
suy ra tam giác BÀN= tam giác CẤM (c.g.c)

b. xét tam giác OBM và tam giác OCN ta có:
góc OBM=góc OCN (2 góc tương ứng)
BM=CN (AB=AC mà AM=AN)
Góc OMB= góc ONC (góc ANB= góc AMC mà AMC+OMB=ANB+ONC)
suy ra tam giác OMB= ta giác ONC (g.c.g)

c.xét tam giác AMO và tam giác ANO ta có:
AM=AN(GT)
góc AMO= góc ANO ( tam giác AMC= tam giác ANB)
OM=ON (tam giác MOB= tam giác NOC)
suy ra tam giác AMO=tam giác ANO (c.g.c)
suy ra góc BAO= góc CAO (2 góc tương ứng). suy ra Ao là p/g của góc A


gọi giao điểm của BC và AO là I.
Xét tam giác ABI và tam giác ACI ta có:
AB=AC (tam giác ABC cân tại A)
góc BAI= góc CAI (CMT)
AI là cạnh chung
suy ra tam giác ABI= tam giác ACI( c.g.c)
suy ra góc AIB= góc AIC (2 góc tương ứng) mà AIB+AIC= 180 độ nên AIB=AIC=180/2=90 độ suy ra AI vuông góc vs Bc. suy ra AO là đường cao của tam giác ABC.

d. khi M,N lần lượt là trung điểm của AB và AC thì BM=MN=NC.

6 tháng 7 2017

a.xét tam giác BAN và tam giác CAM ta có:
AM=AN (GT)
AB=AC ( tam giác ABC cân tại A)
A là góc chung
suy ra tam giác BÀN= tam giác CẤM (c.g.c)

b. xét tam giác OBM và tam giác OCN ta có:
góc OBM=góc OCN (2 góc tương ứng)
BM=CN (AB=AC mà AM=AN)
Góc OMB= góc ONC (góc ANB= góc AMC mà AMC+OMB=ANB+ONC)
suy ra tam giác OMB= ta giác ONC (g.c.g)

c.xét tam giác AMO và tam giác ANO ta có:
AM=AN(GT)
góc AMO= góc ANO ( tam giác AMC= tam giác ANB)
OM=ON (tam giác MOB= tam giác NOC)
suy ra tam giác AMO=tam giác ANO (c.g.c)
suy ra góc BAO= góc CAO (2 góc tương ứng). suy ra Ao là p/g của góc A


gọi giao điểm của BC và AO là I.
Xét tam giác ABI và tam giác ACI ta có:
AB=AC (tam giác ABC cân tại A)
góc BAI= góc CAI (CMT)
AI là cạnh chung
suy ra tam giác ABI= tam giác ACI( c.g.c)
suy ra góc AIB= góc AIC (2 góc tương ứng) mà AIB+AIC= 180 độ nên AIB=AIC=180/2=90 độ suy ra AI vuông góc vs Bc. suy ra AO là đường cao của tam giác ABC.

d. khi M,N lần lượt là trung điểm của AB và AC thì BM=MN=NC.

3 tháng 2 2023

a) Xét ΔBMC và ΔCNB có :

          BM=CN ( AB=AC; AM=AN )

          góc B = góc C ( ΔABC cân tại A )

         BC : chung

suy ra : hai Δ trên bằng nhau theo trường hợp ( c-g-c )

suy ra : đpcm

b) chứng minh EBC cân nha em

Từ : ΔBMC = ΔCNB

suy ra : góc MCB = góc NBC ( 2 góc tương ứng )

suy ra : đpcm

c) ta có : ΔABC cân tại A

suy ra : góc B = góc C= \(\dfrac{180-A}{2}\) (1)

ta lại có : ΔAMN cân tại A 

suy ra : góc AMN = góc ANM = \(\dfrac{180-A}{2}\) (2)

Từ (1) và (2) suy ra đpcm do (các góc ở vị trí đồng vị và bằng nhau )

9 tháng 1 2016

Gọi giao điểm của AI và BC là K

Chứng minh tam giác BIC cân=> IB=IC

tam giác BAI= TG CAI=> Ai là pg của góc A

TG BAI=TG CAI=> góc BIA=góc CIA mà hai góc đó kề bù=> góc BAI vuông <=> AI vuông góc với BC

9 tháng 1 2016

Nguyễn Quang Thành tự mà vẽ ko ai rảnh

còn ko bít làm thì thui