K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 3 2018

Gọi K là trung điểm EB

C/m được tứ giác EOIB là hình thang vuông

Xét  ht vuông EOIB có :

HE = HB

KO = KI

=> HK là đường trung bình hình thang vuông EOIB

=> HK // EO

Mà EO vuong góc với AB => HK vuông góc với AB

Xét tam giác KBE có :

KH vuông góc với EB

HE = HB

=> tam giác KBE cân 

=> góc KEB = góc KBE

C/m được tam giác KBC cân tại K

=> góc KBC = góc KCB (1)

Mà góc ABC = góc ACB (2)

Từ (1) và (2) => góc ACK = góc ABK = góc KEB

=> tứ giác AEKC nội tiếp

Tk mk nha

9 tháng 3 2018

Vẽ hình ra

12 tháng 3 2022

Cho tam giác ABCABC cân tại AA và nội tiếp đường tròn tâm OO, đường kính AIAI. Gọi EE là trung điểm của ABABKK là trung điểm của OIOIHH là trung điểm của EBEB.
a/ Chứng minh  HK\perp EBHKEB
b/ Chứng minh tứ giác AEKCAEKC nội tiếp được trong một đường tròn.

 

a) Ta thấy E, O là trung điểm của AB và AI nên EO là đường trung bình tam giác ABI

\Rightarrow EO song song với BI.

Ta lại có H, K lần lượt là trung điểm của EB và OI

nên HK là đường trung bình của hình thang EOIB.

=> HK song song với BI (1)

Mặt khác do AI là đường kính nên góc ABI = 90 (2)\widehat{ABI}=90^o

Từ (1) và (2) suy ra HK\perp EBHK vuông góc với EB(đpcm)

b)

Xét tam giác KBE có KH là trung tuyến đồng thời đường cao (CM trước)

nên KBE là tam giác cân tại K.

=> góc BEK = KBE (3)

Do tam giác ABC cân tại A

nên AI là đường trung trực của BC

Mà K thuộc AI nên KB = KC

hay tam giác KBC cân tại K

=> KBC=KCB 

và ACB=ABC 

.Mặt khác, ta lại có  ACB=  ACK + KCB và ABC = ABK + KBC

=> ABK=ACK(4)

Từ (3) và (4) suy ra \widehat{BEK}=\widehat{KCA}


.

 AEKC là tứ giác nội tiếp.

1/ Từ một điểm M  ở ngoài đường tròn (O) kẻ hai tiếp tuyến MA, MB( A,B là tiếp điểm) a/ CMR tứ giác MAOB nội tiếp định tâm I và bán kính của đường tròn nàyb/  Cho MO = 2R CMR tam giác MAB đều 2/ Cho đường tròn (O) đường kính AB gọi I là trung điểm của OA. Qua I vẽ dây CD vuông góc AB. K la trung điểm của BC. CMR tứ giác CIOK nội tiếp đường tròn3/ Cho nửa đường tròn (O) đường kính AB....
Đọc tiếp

1/ Từ một điểm M  ở ngoài đường tròn (O) kẻ hai tiếp tuyến MA, MB( A,B là tiếp điểm) 

a/ CMR tứ giác MAOB nội tiếp định tâm I và bán kính của đường tròn này

b/  Cho MO = 2R CMR tam giác MAB đều 

2/ Cho đường tròn (O) đường kính AB gọi I là trung điểm của OA. Qua I vẽ dây CD vuông góc AB. K la trung điểm của BC. CMR tứ giác CIOK nội tiếp đường tròn

3/ Cho nửa đường tròn (O) đường kính AB. Từ A và B kẻ hai tiếp tuyến Ax, By. Qua điểm M thuộc nửa đường tròn kẻ tiếp tuyến thứ ba cắt Ax và By lần lượt tại E và F. CMR tứ giác AEMO là tứ giác nội tiếp 

4/ Cho tam giác ABC cân tại A có góc A nhọn, đường vuông góc với AB tại A cắt đường thẳng B, C tại E. Kẻ EN vuông với EC gọi M là trung điểm BC. CMR tứ giác AMNE là tứ giác nội tiếp đường tròn

Giải giúp mk vs mk đang cần gấp

1

Bài 2:

ΔOBC cân tại O

mà OK là trung tuyến

nên OK vuông góc BC

Xét tứ giác CIOK có

góc CIO+góc CKO=180 độ

=>CIOK là tứ giác nội tiếp

Bài 3:

Xét tứ giác EAOM có

góc EAO+góc EMO=180 độ

=>EAOM làtứ giác nội tiếp

20 tháng 1 2016

oài 3 bài này khó kinh khủng