K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 12 2020

giúp mình

 

30 tháng 12 2020

mình chưa học đến

25 tháng 12 2021

ha ha ha ha ha ha ha ha ha ha ha

27 tháng 12 2021

  bị điên

25 tháng 12 2021

hi hi hi hi hi hi hi hi hi hi

5 tháng 12 2017

AI GIÚP MÌNH VỚI MAI MÌNH PHẢI NỘP BÀI RỒI

20 tháng 1 2018

   Tự vẽ nhé

              Từ A ta kẻ BI vuông góc với ME,cắt ME tại I.Dễ dàng chứng minh được tam giác BHI bằng tam giác EIH nên BH = EI

              Mà EI = ME + MI.Vậy để chứng minh MD+ME=BH ta chỉ cần chứng minh MI=MD

              Do  BI vuông góc EI,EI vuông góc với AC nên BI song song AC

                  Vậy\(\widehat{IBC}=\widehat{ACB}\)hai góc so le trong

              Do tam giác ABC cân tại A nên \(\widehat{ABC}\)\(\widehat{ACB}\)Suy ra: \(\widehat{IBC}=\widehat{ABC}\)

             Xét tam giác BMD và tam giác BMI:

          Có BM chung:

                \(\widehat{IBC}=\widehat{ABC}\)

                  \(\widehat{D}=\widehat{I}\)\(90\)độ

              Vậy tam giác BMD=BMI ch.gn

            Suy ra: IM=MD. Vậy ta có điều phải chứng minh

5 tháng 12 2017

AI GIÚP MÌNH VỚI MAI MÌNH PHẢI NỘP RỒI

20 tháng 2 2021

image

Chúc bạn học tốt

a) Xét ΔAMB vuông tại M và ΔAMC vuông tại M có 

AB=AC(ΔABC cân tại A)

AM chung

Do đó: ΔAMB=ΔAMC(cạnh huyền-cạnh góc vuông)

Suy ra: MB=MC(hai cạnh tương ứng)

b) Ta có: ΔAMB=ΔAMC(cmt)

nên \(\widehat{BAM}=\widehat{CAM}\)(hai góc tương ứng)

c) Xét ΔDMB vuông tại D và ΔEMC vuông tại E có 

MB=MC(cmt)

\(\widehat{B}=\widehat{C}\)(hai góc ở đáy của ΔABC cân tại A)

Do đó: ΔDMB=ΔEMC(cạnh huyền-góc nhọn)

Suy ra: DM=EM(hai cạnh tương ứng)

Xét ΔMDE có MD=ME(cmt)

nên ΔMDE cân tại M(Định nghĩa tam giác cân)