Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hình tự vẽ nha bạn
a) Xét \(\Delta AHB\)và \(\Delta AKC\)có:
\(\hept{\begin{cases}\widehat{A}:chung\\AB=AC\left(gt\right)\\\widehat{AHB}=\widehat{AKC}\left(gt\right)\end{cases}}\)
\(\Rightarrow\Delta AHB=\Delta AKC\left(ch-gn\right)\)
=>AH=AK ( 2 cạnh tương ứng) -đpcm
b) Xét \(\Delta AKI\)và \(\Delta AHI\)có:
\(\hept{\begin{cases}AK=AH\\\widehat{AKI}=\widehat{AHI}\\AI:chung\end{cases}}\)
\(\Rightarrow\Delta AKI=\Delta AHI\left(ch-cgv\right)\)
\(\Rightarrow\widehat{IAK}=\widehat{IAH}\)( 2 góc tương ứng)
=> AI là ti phân giác góc KAH
Xét \(\Delta KAH\)cân tại A ( do AH=AK ) có AI là tia phân giác ứng cạnh KH
=> AI đồng thời là đường trung trực của cạnh KH (t/c) -đpcm
c) Kẻ CM \(\perp\)BE
Xét tứ giác BKCM có:
\(\hept{\begin{cases}\widehat{CKB}=90^0\\\widehat{KBM}=90^0\\\widehat{BMC}=90^0\end{cases}}\)
=> tứ giác BKCM là hình chữ nhật (dấu hiệu nhận biết)
=> BK=CM (t/c) (1)
Dễ dàng chứng minh đc: BK=CH (2)
Từ (1) và (2) có : CM=CH
Xét \(\Delta BHC\)và \(\Delta BMC\)có:
\(\hept{\begin{cases}CH=CM\\\widehat{BHC}=\widehat{BMC}\\CB:chung\end{cases}}\)
=> \(\Delta BHC=BMC\left(ch-cgv\right)\)
=> \(\widehat{CBH}=\widehat{CBM}\)(2 góc tương ứng)
=> BC là tia phân giác góc HBM
hay BC là tia phân giác HBE -đpcm
Chúc bạn học tốt!
d) Xét tam giác CME vuông tại M có CE là cạnh huyền
=>CE>CM (trong tam giác vuông cạnh huyền là cạnh lớn nhất)
mà CH=CM do \(\Delta CBH=\Delta CBM\)
=>CE>CH
Trả lời................
Tớ ko biết đúng hay sai nha:
a) Vì ΔΔABC cân tại A
=> AB = AC và ABCˆABC^ = ACBˆACB^
hay KBCˆKBC^ = HCBˆHCB^
Xét ΔΔCKB vuông tại K và ΔΔBHC vuông tại H có:
BC chung
KBCˆKBC^ = HCBˆHCB^ (c/m trên)
=> ΔΔCKB = ΔΔBHC (ch - gn)
=> KB = HC (2 cạnh t/ư)
Ta có: AH + HC = AC
AK + KB = AB
mà AB = AC; KB = HC
=> AH = AK
b)
) Xét ΔΔAHB và ΔΔAKC có:
AH = AK (câu a)
BACˆBAC^ chung
AB = AC (câu a)
=> ΔΔAHB = ΔΔAKC (c.g.c)
=> ABHˆABH^ = ACKˆACK^ (2 góc t/ư)
hay KBIˆKBI^ = HCIˆHCI^
Xét ΔΔKBI và ΔΔHCI có:
KB = HC (câu a)
KBIˆKBI^ = HCIˆHCI^ (c/m trên)
BKIˆBKI^ = CHIˆCHI^ (= 90o)
=> ΔΔKBI = ΔΔHCI (g.c.g)
=> KI = HI (2 cạnh t/ư)
Xét ΔΔAKI và ΔΔAHI có:
KI = HI (c/m trên)
AI chung
AK = AH (câu a)
=> ΔΔAKI = ΔΔAHI (c.c.c)
=> KAIˆKAI^ = HAIˆHAI^ (2 góc t/ư)
Do đó AI là tia pg của AˆA^.
c)
c) Có : KBCˆ+CBEˆ=90o;HCBˆ+HBCˆ=90oKBC^+CBE^=90o;HCB^+HBC^=90o
mà KBCˆ=HCBˆKBC^=HCB^ ⇒⇒ HBCˆ=CBEˆHBC^=CBE^ hay BC là phân giác HBEˆ
a) Xét 2 tg vuông AEC và ADB có: AB = AC (vì tam giác ABC cân tại A)
góc A chung
Do đó tg AEC = tg ADB (ch - gn)
=> BD = CE (đpcm)
b) xét 2 tg vuông CEB và BDC có: góc CBE = góc BCD (tam giác ABC cân tại A)
CE = BD (Cmt)
do đó tg CEB = tg BDC (cgv - gnk)
=> góc ECB = góc DBC
=> tam giác BIC cân tại I (đpcm)
c) xét 2 tg AIC và AIB có: AC = AB (tam giác ABC cân tại A)
AI chung
BI = IC (tam giác BIC cân (Cmt))
DO đó tg AIC = tg AIB (c.c.c)
=> góc IAC = góc IAB => AI là tia pg của góc BAC (Đpcm)
d) Ta có: tg CEB = tg BDC (cmt) => CD = BE mà AB = AC => AE = AD => AED cân tại A
Mà AI là tia pg của góc EAD nên AI vuông với DE(1)
Ta lại có: Tam giác ABC cân tại A mà AI là tia pg của góc BAC nên AI vuông BC (2)
Từ (1) và (2) suy ra DE // BC (cùng vuông vs BC) (đpcm)
e) ko bt
F) cm vuông như câu d nha
a: Xét ΔAHB vuông ạti H và ΔAKC vuông tại K có
AB=AC
góc BAH chung
=>ΔAHB=ΔAKC
=>AH=AK
b: Xét ΔAKI vuông tại K và ΔAHI vuông tại H co
AI chung
AK=AH
=>ΔAKI=ΔAHI
=>IH=IK
=>AI là trung trực của KI
c: góc EBC+góc ABC=90 độ
góc HBC+góc ACB=90 độ
góc ABC=góc ACB
=>góc EBC=góc HBC
=>BC là phân giác của góc HBE
a, xét tam giác AEC và tam giác ADB có : AB = AC do tam giác ABC cân tại A (gt)
góc AEC = góc ADB= 90 do ...
góc A chung
=> tam giác AEC = tam giác ADB (ch - gn)
a.
Xét \(\Delta AEC\) và \(\Delta ADB\) có:AB=AC(cạnh tam giác cân);\(\widehat{AEC}=\widehat{ADB}=90^0\);\(\widehat{A}\) chung
\(\Rightarrow\Delta AEC=\Delta ADB\left(c.g.c\right)\)
b.
Do trung tuyến CD và BM cắt nhau tại I nên I là trọng tâm.
\(\Rightarrow CI=\frac{2}{3}CD\)
Áp dụng định lý py-ta-go vào tam giác vuông BDC ta có:
\(BC^2=BD^2+DC^2\)
\(\Rightarrow CD^2=BC^2-BD^2\)
\(\Rightarrow CD^2=100-64\)
\(\Rightarrow CD=6\) vì \(CD>0\)
\(\Rightarrow CI=\frac{2}{3}\cdot6=4\)
c
Xét \(\Delta BEC\) và \(\Delta BDC\) có:\(\widehat{BEC}=\widehat{BDC}=90^0\);BC chung;\(\widehat{EBC}=\widehat{DCB}\)
\(\Rightarrow\Delta BEC=\Delta BDC\left(c.g.c\right)\Rightarrow BE=DC\Rightarrow AE=AD\)
Xét \(\Delta HAE\) và \(\Delta HAD\) có:\(\widehat{AEH}=\widehat{ADH}=90^0;AH\)chung;\(AE=AD\)
\(\Rightarrow\Delta HAE=\Delta HAD\left(c.g.c\right)\Rightarrow AH\) là đường phân giác.
Mặt khác tam giác ABC cân nên AH đồng thời là đường cao (nếu bạn chưa học cái này thì có thể CM vuông góc bằng cách tạo giao điểm giữa AH và BC)