Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABD vuông tại D và ΔACE vuông tại E có
AB=AC
\(\widehat{BAD}\) chung
Do đó: ΔABD=ΔACE
Suy ra: BD=CE
b: Xét ΔAED có AE=AD
nên ΔAED cân tại A
c: Xét ΔEBI vuông tại E và ΔDCI vuông tại D có
EB=DC
\(\widehat{EBI}=\widehat{DCI}\)
Do đó; ΔEBI=ΔDCI
Suy ra: IB=IC
Xét ΔAIB và ΔAIC có
AI chung
IB=IC
AB=AC
Do đó: ΔAIB=ΔAIC
Suy ra: \(\widehat{BAI}=\widehat{CAI}\)
hay AI là tia phân giác của góc BAC
a: Xét ΔADB vuông tại D và ΔACE vuông tại E có
AB=AC
góc BAD chung
=>ΔADB=ΔACE
b: Xét ΔIBC có góc IBC=góc ICB
nên ΔIBC cân tại I
a: Xét ΔABD vuông tại D và ΔACE vuông tại E có
AB=AC
\(\widehat{BAD}\) chung
Do đó:ΔABD=ΔACE
b: Xét ΔADI vuông tại D và ΔAEI vuông tại E có
AI chung
AD=AE
Do đó: ΔADI=ΔAEI
Suy ra: \(\widehat{DAI}=\widehat{EAI}\)
hay AI là tia phân giác của góc BAC
c: Xét ΔADE có AD=AE
nên ΔADE cân tại A
Vì tam giác ABC cân tại A (gt)
suy ra: góc ABC = góc ACB
hay góc EBC = góc DCB
Xét tam giác EBC và tam giác DCB có
góc BEC = góc CDB ( =90)
góc EBC = góc DCB (CMT)
BC chung
Suy ra tam giác EBC = tam giác DCB (ch-gn)
suy ra BE=CD (cctu)
Xét tg ABC có:
+ BD là đườg cao (BD vuông góc AC)
+ CE là đg cao (CE vuông góc AB)
Mà BD giao CE tại I (gt)
=> I là trực tâm
=> AI là đường cao
Xét tg ABC cân tai A có: AI là đường cao (cmt)
=> AI cũng là đường pg góc BAC ( Tc tg cân)
a)
Vì tam giác ABC cân tại A (gt)
suy ra: góc ABC = góc ACB
hay góc EBC = góc DCB
Xét tam giác EBC và tam giác DCB có
góc BEC = góc CDB ( =90)
góc EBC = góc DCB (CMT)
BC chung
Suy ra tam giác EBC = tam giác DCB (ch-gn)
suy ra BE=CD (cctu)
b) Xét tg ABC có:
+ BD là đườg cao (BD vuông góc AC)
+ CE là đg cao (CE vuông góc AB)
Mà BD giao CE tại I (gt)
=> I là trực tâm
=> AI là đường cao
Xét tg ABC cân tai A có: AI là đường cao (cmt)
=> AI cũng là đường pg góc BAC ( Tc tg cân)
a: Xét ΔABD vuông tại D và ΔACE vuông tại E có
AB=AC
\(\widehat{BAD}\) chung
Do đó:ΔABD=ΔACE
b: Xét ΔADI vuông tại D và ΔAEI vuông tại E có
AI chung
AD=AE
Do đó: ΔADI=ΔAEI
Suy ra: \(\widehat{DAI}=\widehat{EAI}\)
hay AI là tia phân giác của góc BAC
c: Xét ΔADE có AD=AE
nên ΔADE cân tại A
a: Xét ΔADB vuông tại D và ΔAEC vuông tại E có
AB=AC
\(\widehat{A}\) chung
Do đó: ΔADB=ΔAEC
Suy ra: AD=AE
b: Ta có: \(\widehat{ABC}=\widehat{ABD}+\widehat{OBC}\)
\(\widehat{ACB}=\widehat{ACE}+\widehat{OCB}\)
mà \(\widehat{ABC}=\widehat{ACB}\)
và \(\widehat{ABD}=\widehat{ACE}\)
nên \(\widehat{OBC}=\widehat{OCB}\)
hay ΔOCB cân tại O
a: Xét ΔABD vuông tại D và ΔACE vuông tại E có
AB=AC
góc BAD chung
=>ΔABD=ΔACE
b: Xét ΔADI vuông tại D và ΔAEI vuông tại E có
AI chung
AD=AE
=>ΔADI=ΔAEI
=>góc DAI=góc EAI
=>AI là phân giác của góc DAE
Xét tam giácBCE= tam giác CBD (cạnh huyền -mgóc nhọn)
góc ABC = góc ACB ( cân tại A)
BC chung
==> BD=CE
b) Tam giác BCE=tam giác CBD chứng minh ở câu a nên
góc BCE = góc DBC
--> IBC cân tại I